” ladmac Macro Assembler

L This document describes MADMAC, a fast macro assembler that generates code for the Motorola
| 68000, Atari Jaguar GPU/DSP, and 6502 processors. It was originally written at Atari Corporation by
| programmers who needed a high performance assembler for their work. Madmac was originally

F distributed as part of the Atari ST Computer Developer’s Kit, and has been updated to support the

' requirements of the development system for the Atari Jaguar console. '

Madmac is intended to be used by programmers who write mostly in assembly language. It was not

| originally intended to be a back-end to a C compiler. Therefore it has creature comforts that are usually
 neglected in such back-end assemblers. It supports include files, macros, local symbols, some limited

¢ control structures, and other features. Madmac is also blindingly fast!, a feature often sadly and

| obviously missing in today’s assemblers.

L The assembler is called MAC.EXE (for the PC/MSDOS version) or MAC.TTP (for the Atari/TOS
J version). The command line takes the form of:

| mac [switches] [files ...]

A command line consists of any number of switches followed by the names of files to be assembled. A
switch is specified by a dash (“-”) followed immediately by a key character. Some switches accept o1
require arguments to immediately follow the key character, with no spaces in between. Key characters
are not case-sensitive, so “-d” and “-D” produce the same effect.

Switch order can be important. Command lines are processed from left to right in one pass, and
switches usually take effect when they are encountered. It is best to specify all switches before listing

the names of the input files.

If the command line is empty, the Madmac prints a copyright message and enters an interactive mode,
prompting for successive command lines with an asterisk (“*”) character. Hitting {Enter} on an empty
command line will cause Madmac to exit. After each assembly in interactive mode, Madmac will print
a summary of the memory usage, the number of lines processed, and the amount of time the assembly

took.

Input files are assumed to have the extension “.S” and Madmac will look for a file with this extension if
none is specified. Different extensions may be used if they are specified on the command line. More
than once source file can be specified. The files are assembled into one object file as if they were

concatenated.

1 The PC/MSDOS version of Madmac has been benchmarked at over 240,000 lines per minute on a DX2/66-based PC. Of
course, your mileage may vary.

© 1994 Atari Corp. Confidential Information “7PR Property of Atari Corporation 8 November, 1994

Page 2 Madmac Macro Assembler

Madmac normally produces object code files with the same filename as the input source file, except
with a “.0” extension. If multiple files are specified, the name of the first file is used. If the first input
filename is a device (like CON:), then the output filename will be NONAME.O. The “-0” switch can be
used to change the output filename.

A summary of the available command line switches is shown below. Please note that some switches
may not be applicable to Jaguar programming. They are listed for completeness.

BJ: o) (e
-? Print Madmac usage information.
-6 The -6 switch causes Madmac to act as a back end assembier for the Alcyon

C compiler. However, this mode is not 100% compatible with the AS68
! assembier (which is the normal Alcyon C back-end assembler).

Symbols beginning with a capital “L” are not included in the object file. (These
i are special symbols used by the Alcyon C compiler.)

This is generally not applicable to Jaguar programming unless you're using
the Alcyon C compiler on an Atari computer to generate 68000 code.

-a[s] text, data, bss Output DRI-format absolute executable file ((ABS). Using -as instead of -a
adds symbols to the output file.

text = Address for TEXT segment
data = Address for DATA segment
bss = Address for BSS segment

Values for text, data, and bss can be:
a hexadecimal value to be used as the address.
r: relocatable segment (not useful for Jaguar programs)
X: contiguous segment (contiguous with previous segment)

For exampie "-a 802000 x 4000" would put the TEXT segment at $802000, the
DATA segment immediately after that, and the BSS section at $4000.

8 November, 1994 Confidential Information . .Y Property of Atari Corporation © 1994 Arari Corp.

‘ ‘Madmac Macro Assembler Page 3

*C CpU Start out in a DSP or GPU section instead of 68000, and output .BIN/.SYM
files: cpu is either "dsp" or "gpu™:

dsp: Jerry's DSP output code (i.e. -cdsp)
gpu: Tom's GPU output code (i.e. -cgpu)

External variables cannot be referenced in files assembled with these options,
because BIN files contain only raw binary code with an 8-byte header:

typedef struct {
long exec_addr, [* values are in big-endian */
long code_size; * (Motorola) format */

} BIN_Header;

You can use the -fb option to output BSD symbols and the -g option to output
source-level debugging information in the .SYM file. Note that the use of .BIN z
and .SYM files is mostly for backwards compatibility with code originally

| written for the GASM assembler, and is not recommended for new code.

f { -d symbol{=value] This switch permits symbols to be defined on the command line. The name of]
the symbol to be defined must immediately follow the switch (no spaces). The |
symbol name may optionally be followed by an equals sign (“=") and a decimal ‘
- number for the value to be assigned to the symbol. If no value is specified,
the symbol’s value will be set to zero. The symbol's attributes are “defined,
not referenced, and absolute”. This switch is most useful for enabling
conditionally assembled debugging code or test code on the command line.

i For example:

_dDEBUG -dLoopCount=999 -dDebugLevel=55

This would define “DEBUG" and give it a value of zero, “LoopCount” with a
value of 999, and “DebuglLevel” with a value of 55. 1
-elerrorfile] This switch causes Madmac to send error messages to a file instead of the
console. If a filename immediately follows, error messages are written to the
specified filename. If no filename is specified, a filename is created with the]
default extension of “.ERR” and the root name taken from the first input file
(i.e. error messages are written to FILE.ERR if the first input filename is FILE
or FILE.S).

if no errors are encountered, then no error message file will be created. |
However, note that if an assembly produces no errors, then any error file from
a previous assembly will not be deleted.

© 1994 Atari Corp. Confidential Information “/ Property of Atari Corporation 8 November, 1994

Page 4 Madmac Macro Assembler

-f[format] Select object file format to be output:

-fa: DRI (defauit output)
Symbols are limited to 8 characters length.
Source-level debugging information cannot be included.
No support for proper relocation of MOVEI GPU/DSP instruction.

-tb: BSD (Recommended format for Jaguar programming)
Symbol lengths are unlimited.
Source-level debugging information can be included.
Supports proper relocation for MOVE! GPU/DSP instruction.

A -fm: Mark Williams (not applicable to Jaguar programming)

| Symbols are limited to 8 characters.

Source-level debugging information cannot be included.

No support for proper relocation of MOVEI GPU/DSP instruction.

-fmu: Mark Williams, except moves leading underscore characters on
: symbols to be moved to the end of the symbol name (i.e. *_main”
becomes “main_" and *__main” becomes “_main_").

-g Output source level debugging information (only when using -fb switch to
select BSD format object file output).
-ifpath] The -i switch allows automatic directory searching for include files. A list of

semi-colon separated directory search paths may be listed immediately
following the switch (with no spaces anywhere). For example:

-im:;c:\include;c:\include\sys

will cause Madmac to search the current directory of drive M, and the
directories INCLUDE and INCLUDE\SYS on drive C.

if the “-i” switch is not specified, Madmac searches for the MACPATH
environment variable, which is used to specify include file directories in the
same way. For example:

set MACPATH=m:;c:\include;c:\include\sys

will cause Madmac to search the same directories as the previous example.
(Some command line interpreters may use “setenv” instead of “set” to set an
environment variable instead of a shell variabie.)

It is recommended that you set the MACPATH environment variable to point at
your global include files, and use the -i option only to override or add to the
paths specifed by MACPATH.

If you are using a MAKE utility, and in your MAKEFILE you need to use the -i]
option to specify a certain include path for specific files, but you also need 1
access to the paths specifed by MACPATH, you can do something like this: '

~iproject\inc;$ (MACPATH)

And the $(MACPATH) macro will be expanded by your MAKE utility into the
contents of the MACPATH environment variable. This is a standard feature of
of nearly all MAKE utilities.

8 November, 1994 Confidential Information . a.¥ Property of Atari Corporation © 1994 Atari Corp.

" ‘Madmac Macro Assembler Page 5

{ -llfilename) The -1 switch causes Madmac to generate an assembly listing file. If flename
2 immediately follows the switch, the listing is written to the specified file.

If no filename is specified, a filename is created with the default extension of
“.PRN" and the root name taken from the first input file (i.e. the listing is written
to FILE.PRN if the first input filename is FILE or FILE.S).

The -0 switch causes Madmac to write its object code output to the specified .
file. No default extension is applied to the filename, so you need to specify
whatever extension is appropriate. Unlike most other Madmac command line
switches, a space between the switch and the filename is permitted (but not
required). For example: '

-ojagmand.o

will produce an object file named JAGMAND.O, regardiess of what the source
file was named.

The -p and -ps switches cause Madmac to produce a GEMDOS format
executable program file (with the default extension of “.PRG” unless otherwise
specified by the -0 switch).

If there are any unresolved external references at the end of the assembly, an
error message is emitted and no executable file is created.

The -ps switch adds symbols (Alcyon format) to the output file.

This switch is not applicable to Jaguar programming.

The -q switch was used originally on the Atari to install Madmac as a memory-
resident program. This was intended to reduce load times for multipie calls to
Madmac on floppy-disk based systems.

This switch is not available in the PC/MS-DOS version of Madmac.

-rsize] The -r switch causes Madmac to automatically pad the size of each segment
in the output file until the size is an integral multiple of the specified boundary.
size is a letter that specifies the desired boundary:

-rw word (2 bytes, default alignment)
-rl long (4 bytes)

-rp phrase (8 bytes)

-rd double phrase (16 bytes)

-rq quad phrase (32 bytes)

For example, if the TEXT segment of the output file would normalily be 434
bytes long, then using the "-rp" switch would cause it to be padded in length to
440 bytes long, which would make the end of the segment fall on a phrase
boundary.

The -s switch causes Madmac to generate warning messages about possible
unoptimized forward short branches in 68000 code. This is used to point out
branches that could have been short (e.g. “bra” could be “bra.s”).

The -u switch causes Madmac to force all referenced and undefined symbols
to be global, as though they had been explicitly specified with the .extern or
.globl directives, or defined using a double-colon. (See Symbols and Scope
for more information.)

This switch can be used as a short cut when you have a large numper of
external symbols, and don’t want to use individual .extern or .globl directives
to declare each one.

© 1994 Atari Corp. Confidential Information ™ Property of Atari Corporation 8 November, 1994

Page 6 Madmac Macro Assembler

i

i -v Set verbose mode. This will cause Madmac to print out the names of each

; source file and include file as they are processed. Verbose mode is
automatically entered when Madmac is called with no command line and

: prompts for your input. ,

-ylpagelen) The -y switch, followed immediately by a decimal number (with no intervening
] spaces), sets the number of lines in a page for the assembly listing (if a listing
‘ is requested with the -l switch).

For example, -y90 would set the number of lines per page to 90.

If the number of lines is missing, or less than 10, an error message is
generated.

Let’s assemble some sample files. Load your favorite text editor and create a small text file that looks

like this:
.include “jaguar.inc”
start:
move.w #SFF80,BG
illegal
.end

Save the file as plain ASCII text to the filename TEST.S. Exit your editor, and at the DOS command
line, type the following command:

mac test.s

Assuming your system is setup correctly, this will call Madmac, which will assemble TEST.S and
produce an object module file named TEST.O. If you see an error message telling you that Madmac
cannot find the “JAGUAR.INC” file, then chances are you do not have your MACPATH environment
s variable set correctly. See the Getting Started section of your Jaguar Developer Documentation for
information on how to set your environment variables.

So now we have an object module, which isn’t of much use by itself until you run it through the linker,
probably with other object modules, to create an executable program. But if you have been reading
carefully, then you know that Madmac can generate an executable program file without requiring an
external linker. This is useful for making small stand-alone programs that don’t require external
references or library routines. For example, the following two commands:

mac test.s
aln -e -a 802000 x 4000 -0 test.cof test.o

could be replaced by the single command:

mac -a 802000 x 4000 -o test.cof test.s

i 8 November, 1994 Confidential Information 7P Property of Atari Corporation © 1994 Atari Corp.

dadmac Macro Assembler Page 7

ITo a certain degree, this can also be used to assemble multiple files at once, but it’s probably easier in
Fmost cases to take advantage of the linker at that point. Now let’s try a few other command line options.
[Reload your text editor and load TEST.S into it again. Change the text to look like this:

.include “jaguar.inc”
start:
| Lif colorl
% move .w #SFF80,BG
: .else
move.w #SFF40,BG
.endif
illegal
.end

Again, save the file as plain ASCII text. This time use the filename TEST2.S. Exit your editor, and at
| the DOS command, type the following command:

mac -ltest2.lst -y95 -o test2. cof -as 802000 x 4000 -Dcolorl=l test2.s
is produces an assembly listing file named TEST2.LST with 95 lines per page, writes an executable

| program file (with symbols) to a file named TEST2.COF, and defines the symbol “colorl” to have a
value of 1 when the TEST2.S file is assembled.

. Download and run the program we just created to the Jaguar using the command line:

. rdbjag test2.cof -g -q

You’ll see that all this program does is change the background color of the Jaguar screen by writing a
value to the BG register. Depending on how color] is defined, you will different colors.

If you invoke Madmac with an empty command line, it will print a copyright message and prompt you
for more commands with an asterisk character (*). This is useful if you want to assemble several files in

succession without reloading the assembler for each assembly.

In interactive mode, the assembler is also in verbose mode, as if you had specified “-v” on each
command line:

© 1994 Atari Corp. Confidential Information “7R Property of Atari Corporation 8 November, 1994

Page 8) Madmac Macro Assembler

E: \JAGUAR\SRC\JAGMAND>mac ~ 1 ‘
MADMAC Atari Macro Assembler
Copyright 1987-94 Atari Corp.

V3.03 Aug 20 1994
* -fb -g jagmand.s
[Including: jagmand.s]

[Including: jaguar.inc]

[Leaving: jaguar.inc]

[Including: cry.pal]

[Leaving: cry.pal]

[Leaving: jagmand.s]

[Writing BSD object file: jagmand.o]
33K used, 367 lines
*

You can see that Madmac gave a “blow-by-blow” account of the files it processed, as well as a summary
of the assembler’s memory usage, and the number of lines processed (including macro and repeat-block
expansion as appropriate).

After the assembly is finished, Madmac prompts for another command line with the asterisk. At this
point, you can either type in a new command line to be processed, or you can exit Madmac by hitting
{Enter} on an empty line.

Madmac is a one pass assembler. This means that it gets all of the work done by reading each source
file exactly one time, and then “back-patching” to fix up forward references. This one-pass nature is
usually transparent to the programmer, with the following important exceptions:

. Error messages may appear at the end of the assembly, referring to earlier source lines that
contained undefined symbols.

o All object code generated must fit in memory. Running out of memory is a fatal error that you
must deal with by splitting up your source code files, resizing them, or by increasing your
available memory.2

. Forward branches (including BSR instructions) are never optimized to their short forms (because
this would change the length of the code which has already been generated). To get a short
forward branch, it is necessary to explicitly use the “.s” suffix in the source code.

(I8

The PC/MSDOS version of Madmac is a DOS Protected Mode Interface program and is not subject to the 640K memory
limitations of MS-DOS versions 6.22 and earlier.

8 November, 1994 Confidential Information ™ Property of Atari Corporation © 1994 Atari Corp.

| Madmac Macro Assembler

Madmac does not automatically optimize forward branches for you, but it will tell you about them if you
use the “-s” switch on the command line:

| E: \JAGUAR\SRC\JAGMAND>mac -s example.s
 “example.s”, line 20: warning: unoptimized short branch

t With the “-e” switch, you can redirect the error & warning output to a file, and determine by hand (or
 using editor macros) which forward branches are save to explicitly declare as short.

} Madmac expects source code files to conform to the following rules:

f J Files must contain characters with ASCII values less than 128. Characters with ASCII values
above 127 must be contained in strings (i.e. between single or double quotes) or in comments.

e Lines of text are terminated by carriage return/linefeed, linefeed-only, or carriage return only.
(Carriage Return is ASCII value 13. Linefeed is ASCII value 10.)

p The file is assumed to end with the last terminated line or with a Control-Z (ASCII 26). If there
is text beyond the last line terminator, it is ignored.

A statement may contain up to four fields which are identified by order of appearance and terminating
characters. The general form of an assembler statement is:

label: operator operand(s) ; comment

The label and comment fields are optional. An operand field may not appear without an operator field.
Operands are separated with commas. Blank lines are legal. If the first character on a line is an asterisk
(*) or semi-colon (;) then the entire line is a comment. A semi-colon anywhere on the line (except in a

string) begins a comment field which extens to the end of the line.

The label, if it appears, must be terminated with one or two colons. If it is terminated with a double
colon, it is automatically declared as a global. It is illegal to declare a confined symbol as global (see

Symbols and Scope).

| A statement may also take one of these spectal forms:

© 1994 Atari Corp. Confidential Information . N Property of Atari Corporation 8 November, 1994

Page 10 Madmac Macro Assembler

symbol equ expression

symbol = expression

symbol == expression 1
symbol set expression
symbol req expression y

The first two forms are identical; they equate the symbol the value of an expression, which must be
defined (no forward or external references). The third form, with two equals signs, is similar except that
it also makes the symbol global. The fourth form allows a symbol to be set to a value any number of
times at different positions within the same file, like a variable. The last form equates the symbol to a
16-bit register mask specifed by a register list.

It is possible to equate confined symbols. For example:

cr equ 13 ; carriage return E
1f = 10 ; linefeed '
DEBUG == 1 ; global debug flag

count set 0 ; variable

count set count+1 ; increment the variable :
.regs reg d3-d7/a3-a6 ; register 1list 3
.cr = 13 ; confined (local) equate 5

Symbols may start with an uppercase or lowercase letter (A-Z, a-z), an underscore (1), a question mark
(?), or a period (.). Each remaining character may be any of these characters, except a period, a
numerical digit (0-9), or a dollar sign ($). Symbols are terminated with a character that is not a valid
symbol continuation character (e.g. a period or comma, whitespace, etc.).

Case is significant for user-defined symbols, but not for 68000, GPU, or DSP instruction mnemonics,
assembler directives, or register names. . ; N

Symbols are limited to 100 characters in length, but may be truncated to 8 characters if the DRI object
module format is selected, or 16 characters if the Mark Williams object module format is selected. No
warning or error message is given in the event of a conflict created by symbol names being truncated. If
BSD object module output is selected, the entire symbol, up to 100 characters, is used.

For example, all of the following symbols are legal and unique:

reallyLongSymbolName .dc move

.reallyLongConfinedSymbolName .move

alo frog

.alo .frog)
ret aaé ;
.ret .ag

dc ag

8 November, 1994 Confidential Information Y o N Property of Atari Corporation © 1994 Atari Corp.

t Madmac Macro Assembler

A5

£ 2222

2222 _fog |
.0 ?2zippo? !
¥ .00 sys$system

L 000 atari

3.1 Atari

.11 ATARI

.11 aTaRi

' While all of the following symbols are illegal:

12days dc.10 dc.z ‘quote
i @work ni.there $money$ ~tilde
} .right.here

| Symbols beginning with a period (.) are confined; their scope is limited to the space between two normal
(unconfined) labels. Confined symbols may be either labels or equates. It is illegal to make a confined

I symbol global (with the .globl directive, a double-colon, or a double-equals). Only unconfined symbols
| delimit a confined symbol’s scope; equates (of any kind) do not count. For example, all symbols are

b unique and have unique values in the following:

zZero:: subg.w #1,d1
bmi.s .ret

.loop: clr.w (a0)+
dbra do0, .loop\

.ret: rts

FF:: subg.w #1,d1
bmi.s .99

.loop: move.w $#-1,(a0)+
dbra d0, .loop

.99 rts

Confined symbols are useful as they allow the programmer to be much less inventive about finding
small, unique names that also have meaning.

It is legal to define symbols that have the same name as processor mnemonics (such as “move”or “rts”)
or assembler directives. However, one should be careful when doing so to avoid typographical errors,

such as this:

.gpu
.org = G_RAM

which equates a confined symbol to the value of the G_RAM equate, rather than setting the code
generation address which the .ORG directive does (if the equal sign wasn’t there).

Page 12 Madmac Macro Assembler

The following names, in all combinations of uppercase and lowercase, are reserved keywords and may
not be used as symbols (e.g. labels, equates, or macro names):

equ set reg sr ccr pc sp SsSp usp
do dil d2 d3 d4 d5 dé d7
ao al az2 a3 a4 as a6 a7
r0 rl r2 r3 r4 r5 ré ri7
r8 r9g rl0 rll ri12 rl13 ri4 rls
rié rl7 rl1l8 ri19 r20 r21 1r22 1r23
r24 r25 r26 r27 r28 r29 r30 r31

Numbers may be decimal, hexadecimal, octal, binary, or concatenated ASCII. The default radix is
decimal, and it may not be changed. Decimal numbers ar specified with a string of digits (0-9).
Hexadecimal numbers are specified with a leading dollar sign (8$) followed by a string of digits (0-9) or
uppercase or lowercase letters (a-f, A-F). Octal numbers are specified with a leading at-sign (@)
followed by a string of octal digits (0-7). Binary numbers are specified with a leading percent sign (%)
followed by a string of binary digits (0-1). Concatenated ASCII constants are specified by enclosing
from one to four characters in single or double quotes. For example:

1234 decimal
$1234 hexadecimal
@777 octal
$10111 binary

“z ASCII

‘frog’ ASCI1I

Negative numbers are specified with a unary minus (-)- For example:

-5678 -€334 -$4e71
-%11011 -z’ -"WIND"”

Strings are contained between double (") or single (') quote marks. Strings may contain non-printable
characters by specifying “backslash” escapes, similar to the ones used in the C programming language.
MADMAC will generate a warning if a backslash is followed by a character not appearing below:

8 November, 1994 Confidential Information PR Property of Atari Corporation © 1994 Atari Corp.

Madmac Macro Assembler Page 13

\ $5C backslash

\n $0A line feed (newline)
\b $08 backspace

\t $09 tab

\r $0D Carriage Return

\f $0C form-feed

\e $1B escape

\’ $27 single quote

\” $22 double quote

It is possible for strings (but not symbols) to contain characters with their high bits set (i.e. character
codes 128... 255).

You should be aware that backslash characters are popular in MS-DOS and GEMDOS path names, and
that you may have to escape backslash characters in your source code. For example, to get the filename
"CAAUTO\AHDI.S” you would specify the string “C:\\AUTOWAHDI .S".

Registeri_lsts e -

Register lists are special forms used with the movem 63000 mnemonic and the reg directive. They are
16-bit values, with bits 0 through 15 corresponding to registers DO through A7. A register list consists of

= aseries of register names or register ranges separated by slashes. A register range consists of two register

names, Rm and Rn, m < n, separated by a dash. For example:

Note: older versions of Madmac supported the use of register names RO, R1, ... R15 as register names.
This is no longer supported because these are now reserved as Jaguar GPU & DSP register names.

Resister list Value
d0-d7/a0-a7 SFFFF
d2-d7/a0/a3-ab S39FC
do/dl1/a0-a3/d7/a6-a’ SCF83
do0 $0001

Register lists and resister equates may be used in conjunction with the movem 68000 mnemonic, as in
this example:

temps reg d0-d2/a0-a2 ; temp registers
keeps reg d3-47/d3-a0 ; registers to preserve
allregs reg d0-d7/a0-a7 ; all registers
movem.l #temps,-(Sp) ; these two lines
movem.l d0-d2/a0-a2.-(sp); ... are identical
movem.1l #keeps.-(sp) ; save "keep" registers
movem.l (sp)+,#keeps : restore “"keep" registers

© 1994 Atari Corp. Confidential Information 7 a ¥ Property of Atari Corporation 8 November, 1994

Page 14 Madmac Macro Assembler

All values are computed with 32-bit 2's complement arithmetic. For Boolean operations (suchasif or
assert) zero is considered false, and non-zero is considered true.

Expressions are evaluated strictly left-to-right, with no regard for operator precedence.

Thus the expression "1 + 2 * 3~ evaluates to 9, not 7. However, precedence may be forced with
parenthesis (()) or square brackets (D-

Expressions belong to one of three classes; undefined, absolute or relocatable. An expression is
undefined if it involves an undefined symbol (e.g. an undeclared symbol, or a forward reference). An

values).

An expression is relocatable if jt involves exactly one symbol that is contained in a text, data or BSS
section.

It is important to realize that relocatable values belong to the sections they are defined in (e.g. text, data
or 1355), and it is not permissible to mix and match sections. For example, in this code:

linel: dc.1 line2, linel+8

line2: dc.1 linel, line2-8

line3: dc.1 line2-linel. 8

error: dc.1 linel+line2, line2 » 1, line3/4a

The pseudo-symbo] “** (asterisk) has the value that the current section's location counter had at the
beginning of the current source line. For example, these two Statements deposit three pointers to the
label bar":

foo: dc.1 *+4
bar: dc-I *, *

8 November, 1994 Confidential Information 7" Property of Arari Corporation © 1994 Atari Corp.

i Madmac Macro Assembler Page 15

Similarly, the pseudo-symbol “$” has the value of the current section's location counter, and it is kept up
[to date as the assembler deposits information “across" a line of source code. For example, these two
' statements deposit four pointers to the label "zip";

zip: dc.1 $+8, S$+4
zop: dc.1 $, $-4

Operator Description

- Unary minus (2's complement).

! Logical (Boolean) NOT.

~ Tilde: bitwise not (I's complement).
~~defined symbol True if symbol has a value.
~~referenced symbol True if symbol has been referenced.
~rstreq string1 string2 ~ True if the strings are equal.
~~macdef macroName True if the macro is defined.

. The Boolean operators generate the value 1 if the expression is true, and 6 if it is not.

K A symbol is referenced if it is involved in an expression. A symbol may have any combination of
attributes: undefined and unreferenced, defined and unreferenced (i.e. declared but never used),
undefined and referenced (in the case of a forward or external reference), or defined and

referenced.

Operator Description
+-*/ The usual arithmetic operators.

% Modulo.
&1" Bit-wise AND, OR and Exdusive Or.
« » Bit-wise shift left and shift right.
< <= >= > Boolean magnitude comparisons.
= Boolean equality.
<> I= Boolean inequality.
. All binary operators have the same precedence: expressions are evaluated strictly left to right.
. Division or modulo by zero yields an assembly error.
. The "<>" and '1=" operators ar¢ synonyms.
. Note that the modulo operator (%) is also used to introduce binary constants (see: Constants). A

percent sign should be followed by at least one space if it is meant to be a modulo operator, and
is followed by a ‘0" or '1".

L © 1994 Atari Corp. Confidential Information “7PR Property of Atari Corporation 8 November, 1994

Page 16 Madmac Macro Assembler

Special Form Description

*“date The current system date (GEMDOS format).
“*time The current system time (GEMDOS format).
* The *“*"date” special form expands to the current system date, in GEMDOS format. The format

is a 16-bit word with bits4 indicating the day of the month (1...31), bits 5.. .8 indicating the
month (I... 12), and bits 9... 15 indicating the year since 1980, in the range 0... 119.

. The “*"time" special form expands to the current system time, in GEMDOS format. The format
is a 16-bit word with bits 0-4 indicating the current second divided by 2, bits 5-10 indicating the
current minute (0-59), and bits 11-15 indicating the current hour (0-23).

line address contents source code

1 00000000 4480 labl: neg.l do

2 00000002 427900000000 lab2: clr.w labl

3 =00000064 equl = 100

4 =00000096 equ?2 = equl + 50

5 00000008 00000064 dec.1l labl + equl

6 0000000c TFFFFFE6 dc.1l (equl + -equ2) » 1
7 00000010 0001 dc.w ““defined equl

8 00000012 0000 dc.w ““referenced lab2?
9 00000014 00000002 dc.l lab2

10 00000018 0001 dc.w ““referenced lab?
11 00000012 0001 dc.w labl = (lab2 - 6)

Lines 1 through 4 are used to set up the rest of the example. Line 5 deposits a relocatable pointer to the
1 location 100 bytes beyond the label labl. Line 6 is a nonsensical expression that uses the ~ and right-
shift operators. Line 7 deposits a word of 1 because the symbol equl is defined (in line 3). Line 8
deposits a word of 0 because the symbol lab2, defined in line 2, has not been referenced. But the
expression in line 9 references the symbol lab2, so line 10 (which is a copy of line 8) deposits a word of
1. Finally, line 11 deposits a word of 1 because the boolean equality operator evaluates to true.

The operators ~“defined and * “referenced are particularly useful in conditional assembly. For
instance, you can automatically include debugging code if the debugging code is referenced, as in:]

8 November, 1994 Confidential Information 7% Property of Atari Corporation © 1994 Atari Corp.

WMadmac Macro Assembler Page 17

lea string, a0 ; a0 -> message
jsr debug ; print a message
4 rts ; and return
string:
~ dc.b "Help me, Spock!",0 ; (the message)

-
-

.iif ~*“defined debug, .include "debug.s"

 The jsr statement references the symbol debug. Near the end of the source file, the .iif statement includes
the file "debug.s" if the symbol debug was referenced. In production code, presumably all references to
the debug symbol will be removed, and the DEBUG.S debugging source code file will not be included.

| (We could have as easily made the symbol debug external, instead of including another source file).

| Assembler directives may be any mix of upper- or lowercase. The leading periods are optional, though

b they are shown here and their use is encouraged. Directives may be preceeded by a label; the label is

| defined before the directive is executed. Some directives accept size suffixes (.b, .s, .w or .1); the default
is word (.w) if no size is specified. The .s suffix is identical to .b.

#l Directive Description
| 6502 Switch to 6502 assembly mode. The location counter is undefined, and must be set

with the .org directive before any code can be generated.

Inside a 6502 segment, the dc.w directive will produce 6502-format words (little-
endian, with low byte first).

The reserved keywords for other sections (d0-d7/a0-a7/ssp, usp. and so on) remain
reserved (and thus unusable) while in the 6502 section.

The directives globl, dc.1, deb.l, text, data, bss, abs, even and comm are illegal in
the 6502 section.

It is permitted, though probably not useful, to generate both 6502 and 68000 code in
the same object file.

Please note that the 6502 assembly capabilities of MADMAC have not been tested
since the addition of the Jaguar GPU and DSP assembly modes. It is quite possible
that the 6502 capabilities are broken in current versions of MADMA C.
.68000 Switch to 680x0 assembly mode. This directive must be used within the TEXT or
DATA segments. Instructions for the 6502, Jaguar GPU, and Jaguar DSP may not
be assembled while in 680x0 assembly mode.

.assert expression Assert that the conditions are true (non-zero). If any of the comma-separated
’ lexpression) expressions evaluates to zero an assembler warning is issued. For example:

.assert *-start = $76
.assert stacksize >= $400

© 1994 Atari Corp. Confidential Information 7K Property of Atari Corporation 8 November, 1994

Page 18

Madmac Macro Assembler

.AUTOEVEN

Enables automatic word alignment between directives and instructions. For example,
if you do:

.DC.B $12
.DC.L $3456789A

and the address at the DC.L directive following the .DC.B directive is not word-
aligned, then Madmac will pad with a zero byte before the DC.L directive. This
results in $12 $00 $34 $56 $78 $9A being output. This is the default mode of
operation.

.bss
.data
dext

Switch to the BSS, DATA or TEXT segments.

The TEXT segment typically contains your executable program code. The DATA
segment typically contains pre-initialized data (strings, tables, etc.). The BSS
segment is used for uninitialized data storage.

Instructions and data may not be assembled into the BSS segment, but symbols may
be defined and storage may be reserved with the .ds directive. Each assembly starts
out in the text segment.

.cargs
[#expression,)
symboli.size}

[. symbol.size)...)

Compute stack offsets to C (and other language) arguments. Each symbol is
assigned an absolute value (like equ) which starts at expression and increases by
the size of each symbol, for each symbol. If the expression is not supplied, the
default starting value is 4. For example:

.cargs #8, .fileName.l, openMode, .bufPointer.1l

could be used to declare offsets from register A6 to a pointer to a filename, a word
containing an open mode, and a pointer to a buffer. (Note that the symbois used here
are confined). Another example, a C-style "string-length" function, could be written
as:

strlen::
.cargs .string ; declare arg
move.l .string(sp),ao ; a0 -> string
moveq $#-1,do ; initial size = -1
-1:

addqg.1 #1,d0 bump size

tst.b (ao0)+ ; at end of string?
bne .1 ;7 (no -- try again)
rts ; return string length
.CCDEF expression Allows you to define names for the condition codes used by the JUMP and JR
instructions for GPU/DSP code. For example:
Always .CCDEF 0
jump Always, (r3) ; 'Always' is actually 0
.CCUNDEF Undefines a register name previously assigned using the .CCDEF directive. This is
registername only implemented for GPU/DSP code sections.
.CLEAR After this directive, Madmac allows the use of the CLR.L instruction for the 680x0.

The CLR.L instruction does not work properly on the Jaguar when accessing
hardware register locations. The default state is .CLEAR.

.comm symbol,
expression

Specifies a label and the size of a common region. The labe! is made global, thus
confined symbols cannot be made common. The linker groups all common regions of
the same name; the largest size determines the real size of the common region when
the file is linked.

8 November, 1994

Confidential Information 70K Property of Atari Corporation © 1994 Auari Corp.

Madmac Macro Assembler

Page 19

P .DC.I expression

This directive generates long data values and is similar to the DC.L directive, except
the high word and low word are swapped. This is provided for use with the
GPU/DSP MOVE! instruction.

.def.size] expression
[.expression...]

Deposit initialized storage in the current section. If the specified size is word (.w) or
long (.b), the assembler will execute an .even directive before depositing data. If the
size is byte (.b), then strings that are not part of arithmetic expressions are deposited

byte-by-byte.
if no size is specified, the default is .w.

This directive cannot be used in the BSS section.

| .dcbl.size]
expression1
[.expression2,...]

Generate an initialized block of expression1 bytes, words or longwords of the value
expression2. If the specified size is word or long, the assembler will execute an
.even directive before generating data.

if no size is specified, the default is .w.

This directive cannot be used in the BSS section.

.DPHRASE

Align the program counter to the next integral double phrase boundary (16 bytes).
Note that GPU/DSP code sections are not contained within their own segments, and
are actually part of the TEXT or DATA segments. Therefore, to align GPU/DSP
code, align the current section before and after the GPU/DSP code.

J(ds[.size} expression

Reserve space in the current segment for the appropriate number of bytes, words or
longwords. If the size is word or long, the assembler will execute an .even directive
before reserving space.

If no size is specified, the default size is .w.

This directive can only be used in the BSS or ABS sections (in TEXT or DATA, use
.dc.b to reserve large chunks of initialized storage.)

.DSP Switch to Jaguar DSP assembly mode. This directive must be used within the TEXT
or DATA segments. All DSP instructions, as defined in the Jaguar Software
Reference Manual - Tom And Jerry, may be assembled while in DSP assembly
mode.

.eject Issue a page eject in the listing file.

.end End the assembly of the current file. In an include file, ends the include file and
resumes assembling the superior file. This statement is not required, nor are warning
messages generated if it is missing at the end of a file. This directive may be used
inside conditional assembly, macros or .rept blocks.

.EQUR expression Allows you to name a register. This is only implemented for GPU/DSP code
sections. For example:

ClipW .EQUR ri9
add ClipW,r0 ; ClipW actually is ri9
| .EQURUNDEF Undefines a register name previously assigned using the .EQUR directive. This is
registername only implemented for GPU/DSP code sections.

.even If the location counter for the current section is odd, make it even by adding one to it.
In text and data sections a zero byte is deposited if necessary. See also the
directives .Ionﬁg, .phrase, .dphrase, and .gphrase.

i © 1994 Atari Corp. 8 November, 1994

Confidential Information " a9 Property of Atari Corporation

I

Page 20 Madmac Macro Assembler
.globl symbol Each symbol specified is made global. if the symbol is defined in the assembly, the
[.symbol...] symbol is exported in the object file. If the symbol is undefined at the end of the

.extern symbol
[.symbol...]

assembly, and it was referenced (i.e. used in an expression), then the symbol value
is imported as an external reference that must be resolved by the linker.

None of the symbols may be confined symbols (those starting with a period).

The .extern directive is merely a synonym for .globil.

.goto /abel

This directive provides unstructured flow of control within a macro definition. It will
transter control to the line of the macro containing the specified goto label. A goto
label is a symbol preceeded by a colon that appears in the first column of a source
line within a macro definition;

:label

where the label itself can be any valid symbol name, followed immediately by
whitespace and a valid source line (or end of line). The colon must appear in the first
column.

The goto-label is removed from the source line prior to macro expansion - to all
intents and purposes the label is invisible except to the .goto directive. Macro
expansion does not take place within the label.

For example, here is a silly way to count from 1 to 10 without using .rept:

.macro Count

count set 1

:loop dc.w count
count set count + 1
iif count <= 10, goto loop
.endm

.GPU

Switch to Jaguar GPU assembly mode. This directive must be used within the TEXT
or DATA segments. All GPU instructions, as defined in the Jaguar Software
Reference Manual - Tom And Jerry, may be assembled while in GPU assembly
mode.

.if expression
.else

Start a block of conditional assembly. If the expression is true (non-zero) then
assemble the statements between the if and the matching endif or else. If the

.endif expression is false, ignore the statements unless a matching else is encountered.
Conditional assembly may be nested to any depth.
It is possible to exit a conditional assembly block early from within an include file (with
end) or a macro (with endm).

.iif expression, Immediate version of if. If the expression is true (non-zero) then the statement, which

Statement may be an instruction, a directive or a macro, is executed. If the expression is false,
the statement is ignored. No .endiif is required. For example:
.iif age < 21, canDrink = 0
.iif weight > 500, dangerFlag = 1
.iif !(""“defined DEBUG). include dbsrc

8 November, 1994 Confidential Information e a.¥ Property of Atari Corporation © 1994 Atari Corp.

p

Madmac Macro Assembler

Page 21

JINCBIN filename

Include a binary file in your source at the present position. The syntax is the same as
the .INCLUDE directive. If no filename extension is specified, then .BIN is added
automatically. The data in the binary file is included verbatim in the output file. For
example:

picture_dat::
.INCBIN “"picture.dat”

will include the data within the file PICTURE.DAT at the position following the

picture_dat label.

Note that for large files, it's much more efficient to use the "-i* or "-ii" switch of the
ALN linker rather than the .INCBIN directive; your compile times and object file sizes
will be significantly shorter. ’

.include ‘file" -

Include a file. If the filename is not enclosed in quotes, then a default extension of ".s"
is applied to it. if the filename is quoted, then the name is not changed in any way.

Note: If the filename is not quoted and not a valid symbol, then the assembier will
generate an error message. You should enclose filenames such as “ATARLS” in
quotes, because such names are not valid symbols.

if the include file cannot be found in the current directory, then the directory search
path, as specified by -i on the conunandline, or by the MACPATH
enviroment string, is traversed.

§ Jnit[.size)
[#expression)
expression|.size)

[.]

Generalized initialization directive. The size specified on the directive becomes the
default size for the rest of the line. (The "default" default size is .w.) A comma-
separated list of expressions follows the directive; an expression may be followed by
a size to override the default size. An expression may be preceeded by a sharp sign, |
an expression and a comma, which specifies a repeat count to be applied to the next
expression. For example;

.init.l1 -1, O.w, $16,'z"'.b, #3,0, 11.b

will deposit a longword of -1, a word of zero, sixteen bytes of lower-case 7', three
longwords of zero, and a byte of 11. No auto-alignment is performed within the line,
but a even is done once at the beginning (before the first value is deposited) if the

default size is word or long.

JPAD

After this directive, a NOP instruction will automatically be added after each JUMP or
JR instruction in GPU or DSP assembly mode. The default is for padding to be
turned off. Each time you switch sections using the .GPU or .DSP directives,
padding is turned off.

] .ist

.nlist

Enable or disable source code listing. These directives increment and decrement an
internal counter, so they may be appropriately nested. They have no effect if the -
switch is not specified on the commandline.

.LONG

Align the program counter to the next integral long boundary (4 bytes). Note that
GPU/DSP code sections are not contained within their own segments, and are
actually part of the TEXT or DATA segments. Therefore, to align GPU/DSP code,
align the current section before and after the GPU/DSP code.

.macro name [formal,
formal, ...]

.endm

.exitm

Define a macro called name with the specified formal arguments. The macro
definition is terminated with a .endm statement. A macro may be exited early with the
_exitm directive. See the chapter on Macros for more information.

© 1994 Atari Corp.

Confidential Information “7PR Property of Atari Corporation 8 November, 1994

Madmac Macro Assembler

Page 22

.macundef
macroName
[.macroName...]

formerly known as:

Remove the macro definition for the specified macro names. If reference is made to a
macro that is not defined, no error message is printed and the name is ignored.

Older versions of Madmac recognized the .undefmac directive. In current versions
of MADMAC, the .undefmac directive has been replaced by the .macundef

.undefmac directive.

macroName

[.macroName...]

.NOAUTOEVEN Disables automatic word alignment between directives and instructions. For
example, if you do:

.DC.B $12

.DC.L $3456789A
then Madmac will output $12 $34 $56 $78 $9A regardless of the alignment of the
data. This directive does not affect the directives .EVEN, .LONG, .PHRASE,
.DPHRASE, .QPHRASE or "-r" commandline switch. The default mode of operation
is . AUTOEVEN.

.NOCLEAR After this directive, Madmac no longer allows the use of the CLR.L instruction for the
680x0. The CLR.L instruction does not work properly on the Jaguar when accessing
hardware register locations. The default state is .CLEAR.

.NOJPAD After this directive, NOP instructions will no longer be added automatically after each
JUMP or JR instruction in GPU or DSP assembly mode.

.NOLIST Turns off the assembly listing output. This is basically the same as the .NLIST

directive, and has been added for better compatibitity with other assemblers.

.offset [location]

.abs [location]

formerly known as:

Start an absolute section, beginning with the specified location (or zero, if no location
is specified). An absolute section is much like BSS, except that locations declared
with the .ds directive are absolute and not relocatable by the linker. This directive is
useful for declaring structures or hardware locations. For example, the following
equates:

VPLANES = 0
VWRAP = 2
CONTRL = 4
INTIN = 8
PISIN = 12
could be as easily defined as:
.abs
VPLANES: ds.w 1
VWRAP: ds.w 1
CONTRL: ds.l 1
INTIN: ds.l 1
PTSIN: ds.1l 1

Older versions of MADMAC recognized the .abs directive. In current versions of
MADMAC, the .abs directive has been replaced by the .offset directive.

8 November, 1994

Confidential Information 7% Property of Atari Corporation © 1994 Atari Corp.

8 Madmac Macro Assembler Page 23

/48 {J.ORG expession Define the origin address used for code generation. It sets the value of the location
; counter {(or pc) to the value specified by expression, which must be defined, and
absolute.

The .ORG directive is intended for Jaguar GPU, Jaguar DSP, or 6502 code. itis not
legal in 68000 sections. For 6502 sections, the address specified must be iess than
$10000 (the upper limit of the 6502 address range.)

All symbols generated following this directive will be non-relocatable.

PHRASE Align the program counter to the next integral phrase boundary (8 byte). Note that
GPU/DSP code sections are not contained within their own segments, and are
actually part of the TEXT or DATA segments. Therefore, to align GPU/DSP code,
align the current section before and after the GPU/DSP code.

PRINT expression The .PRINT directive is similar to the standard ‘C' library printf() function and is used
to print user messages from the assembly process. You can print any string or valid
expression. Ifan expression is undefined, Madmac will output “<???>" instead of the
value. Several format fiags that can be used to format your output are also
supported. If the value is a |abel with a value relative to the start of the TEXT, DATA,
or BSS segments, it will be displayed in a format like “TEXT + x".

1% hexadecimal

/d signed decimal

fu unsigned decimal

fw word

1l long

For example:

MASK .EQU SFFF8
VALUE .EQU -100000

.print "Mask: $",/x/w MASK
.print "value: »,/d/1 VALUE

This will print "Mask: $FFF8" and "Value: -100000"

.QPHRASE Align the program counter to the next integral quad phrase boundary (32 bytes).
Note that GPU/DSP code sections are not contained within their own segments, and
are actually part of the TEXT or DATA segments. Therefore, to align GPU/DSP
code, align the current section before and after the GPU/DSP code.

"REGEQU expression | Essentially the same as EQUR. Included for compatibility with the GASM assembler

JREGUNDEF Essentially the same as "EQURUNDEF. Included for compatibility with the GASM
assembier.

.rept expression The statements between the .rept and ~endr directives will be repeated expression

.endr times. If the expression is zero or negative, no statements will be assembled. No
label may appear on a line containing either of these directives.

title “string” Set the title or subtitle on the listing page. The title should be specified on the the first
line of the source program in order to take effect on the first page. The second and

.subttl [-1 “string" subsequent uses of title will cause page ejects. The second and subsequent uses of

.suhttl will cause page ejects unless the subtitle string is preceeded by a dash (-).

L The directives .INIT, .CARGS, .TEXT, .DATA, and .BSS are forbidden while in GPU or DSP
sections.

© 1994 Atari Corp. Confidential Information “7PR Property of Atari Corporation 8 November, 1994

Page 24 Madmac Macro Assembler

A macro definition is a series of statements of the form:

.macro name [formal-arg, ...]

statements making up the macro body

.endm

The name of the macro may be any valid symbol that is not also a 68000, GPU, or DSP instruction
mnemonic or an assembler directive. (The name may begin with a period - macros cannot be made
locally confined like labels or equated symbols.) The formal argument list is optional; it is specified with
a comma-separated list of valid symbol names. Note that there is no comma between the name of the
macro and the name of the first formal argument

A macro body begins on the line after the .macro directive. All instructions and directives, except other
macro definitions, are legal inside the body.

The macro ends with the .endm directive. If a label appears on the line with this directive, the label is
ignored and a warning is generated.

ubstitution =

Within the body, formal parameters may be expanded with the special forms:

\name
\{name}

The second form (enclosed in braces) can be used in situations where the characters following the formal
parameter name are valid symbol continuation characters. This is usually used to force concatentation, as
in:

\{frog}star
\{godzilla}vs\{reagan}

The formal parameter name is terminated with a character that is not valid in a symbol (e.g. whitespace
or puncuation); optionally, the name may be enclosed in curly-braces. The names must be symbols
appearing on the formal argument list, or a single decimal digit (\1 corresponds to the first argument, \2
to the second, \9 to the ninth, and \0 to the tenth). It is possible for a macro to have more than ten formal
arguments, but arguments 11 and on must be referenced by name, not by number.

Other special forms are:

8 November, 1994 Confidential Information ‘PR Property of Atari Corporation © 1994 Asari Corp.

i Madmac Macro Assembler Page 25

pecta O e ptio
\ a single V'
1 \~ a unique label of the form “Mn”
1 \# the number of arguments actually specified
\! the 'dot-size" specified on the macro invocation
i \?name conditional expansion
4 \?{name} conditional expansion

The last two forms are identical: if the argument is specified and is non-empty, the form expands to a
«1”_otherwise (if the argument is missing or empty) the form expands to a “0”. :

E The form “\!” expands to the “dot-size” that was specified when the macro was invoked. This can be
- used to write macros that behave differently depending on the size suffix they are given, as in this macro
which provides a synonym for the "dc" directive:

.macro deposit value

dc\! \value
.endm
deposit.b 1 ; byte of 1
deposit.w 2 ; word of 2
deposit.l 3 ; longword of 3
deposit 4 ; word of 4 (no explicit size)

~ A previously-defined macro is called when its name appears in the operation field of a statement.
Arguments may be specified following the macro name; each argument is seperated by a comma.
Arguments may be empty. Arguments are stored for substitution in the macro body in the following

manner:

. Numbers are converted to hexadecimal.

. All spaces outside strings are removed.

. Keywords (such as register names, dot sizes and “**”operators) are converted to lowercase.
. Strings are enclosed in double-quote marks (").

For example, a hypothetical call to the macro mymacro, of the form:

mymacro a0, , ‘zZorch’ / 32, ~"DEFINED foo, , ., tick tock

will result in the translations:

© 1994 Atari Corp. Confidential Information ™ Property of Atari Corporation 8 November, 1994

Page 26 Madmac Macro Assembler

Argument Expansion Comment
\1 a0 “a0” converted to lower-case
\2 empty
\3 "Zorch"/$20 ‘Zorch" in double-quotes, 32 in hexadecimal 1
\4 ““defined foo | “**"DEFINED" converted to lower-case ;
\S empty
\6 empty
\7 ticktock spaces removed (note concatenation)

The .exitm directive will cause an immediate exit from a macro body. Thus the macro definition:

.macro foo source
.iif !\?source, .exitm ; exit if source is empty . |
move \source.do ; otherwise, deposit source 1
.endm] '

will not generate the move instruction if the argument “source” is missing from the macro invocation.

The .end, .endif and .exitm directives all pop-out of their include levels appropriately. That is, if a
macro performs a include to include a source file, and executed .exitm directive within the include-file
will pop out of both the include file and the macro.

Macros may be recursive or mutually recursive to any level, subject only to the availabilityof memory.
When writing recursive macros, take care in the coding of the termination condition(s). A macro that
repeatedly calls itself will cause the assembler to exhaust its memory and abort the assembly.

The Gemdos macro is used to make file system calls. It has two parameters, a function number and the
number of bytes to clean off the stack after the call. The macro pushes the function number onto the
stack and does the trap to the file system. After the trap returns, conditional assembly is used to choose
an addq or as add.w to remove the arguments that were pushed.

-macro Gemdos trpno, clean

move.w #\trpno,-(sp) ; push trap number

trap #1 ; do Gemdos trap

.1f \clean <= 8 3
addq #\clean,sp ; clean-up up to 8 bytes i
.else ' 1
add.w #\clean,sp ; clean-up more than 8 bytes

.endif

.endm

The Fopen macro is supplied two arguments; the address of a filename, and the open mode. Note that
plain move instructions are used, and that the caller of the macro must supply an appropriate addressing 1
mode (¢.g. immediate) for each argument. Additionally, the Fopen macro calls another macro.]

8 November, 1994 Confidential Information “7P% Property of Atari Corporation © 1994 Atari Corp.

Madmac Macro Assembler Page 27

M) macro Fopen file, mode
' move.w \mode,-(sp) ; push open mode
move.l \file,-(sp) ; push address of file nane
Gemdos $34d,8 ; do the GEMDOS call
.endm

The String macro is used to allocate storage for a string, and to place the string's address somewhere.
The first argument should be a string or other expression acceptable in a dc.b directive. The second
argument is optional; it specifies where the address of the string should be placed. If the second

argument is omitted, the string's address is pushed onto the stack. The string data itself is kept in the data

segment.
macro String str,loc
Lif ‘ \?loc ; 1f loc is defined
move.l #.\-,\loc ; put the string's address there
.else ; otherwise
pea A ; push the Btring's address
.endif
.data ; put the string data
A~ dc.b \str,0 ; in the data segment
| 3 text ; and switch back to the text
w. B scgment
"~ .endm

The construction “.\~” will expand to a label of the form ".Mn" (where n is a unique number for every
macro invocation), which is used to tag the location of the string. The label should be confined because
the macro may be used along with other confined symbols.

Unique symbol generation plays an important part in the art of writing fine macros. For instance, if we
needed three unique symbols, we might write “.a\~”, “.b\~” and “.c\~"".

Repeat-blocks provide a simple iteration capability. A repeat block allows a range of statements to be
repeated a specified number of times. For instance, to generate a table consisting of the numbers 255

through 0 (counting backwards) you could write:

.count set 255 ; initialize counter
rept 256 ; repeat 256 times:
dc.b count ; deposit counter

.count set count - 1 ; and decrement it
.endr ; (end of repeat block)

¥ Repeat blocks can also be used to duplicate identical pieces of code (which are common in bitmap-
graphics routines). For example;

© 1994 Atari Corp. Confidential Information ‘ﬂ Property of Atari Corporation 8 November, 1994

Page 28 Madmac Macro Assembler

.rept 16 ; clear 16 words
clr.w (al0)+ ; starting at AO
.endr

All of the standard Motorola 68000 mnemonics and addressing modes are supported; you should refer
to The Motorola M68000 Programmer's Reference Manual for a description of the instruction set
and the allowable addressing modes for each instruction. With one major exception (forward branches)
the assembler performs all the reasonable optimizations of instructions to their short or address register
forms.

Register names may be in upper or lower case. The alternate forms RO through R15 may be used to
specify D0-D7 and A0O-A7. All register names are keywords, and may not be used as labels or symbols.
None of the 68010 or 68020 register names are keywords (but they may become keywords in the future).

i emble 3 De ptio

Dn Data register direct

An Address register direct

(An) Address register indirect

(An)+ Address register indirect postincrement
-(An) Address register indirect predecrement
disp(An) Address register indirect with displacement
bdisp(An, Xi{.size}) Address register indirect indexed
abs.w Absolute short

abs Absolute (long or short)

abs.! Forced absolute long

disp(PC) Program counter with displacement
bdisp(PC, Xi) Program counter indexed

#imm immediate

Since MADMALC is a one pass assembler, forward branches cannot be automatically optimized to their
short form. Instead, unsized forward branches are assumed to be long. Backward branches are always
optimized to the short form if possible. A table that lists "extra” branch mnemonics (common synonyms
for the Motorola defined mnemonics) appears below.

W

8 Navember, 1994 Confidential Information 7R Property of Atari Corporation © 1994 Atari Corp.

Madmac Macro Assembler Page 29

bhs bcc

blo bcs
bze,bz beq
bnz bne
dbio dbcs
dbze dbeq
dbra dbf
dbhs dbhi
dbnz dbne

It is not possible to make an external reference that will fix up 2 byte. For example:

.extern frog
move.l frog(pc,dO),dl

~ isillegal (and generates an assembly error) when frog is external, because the displacement occupies a
byte field in the 68000 offset word, which the object file cannot represent® .

nizations and Translations

The assembler provides “creature comforts” when it processes 68000 mnemonics:

CLR.x An will really generate SUB.x An,An. -- -

. ADD, SUB and CMP with an address register will really generate ADDA, SUBA and CMPA.
. The ADD, AND, CMP, EOR, OR, and SUB mnemonics with immediate first operands will
generate the “I” forms of their instructions (ADDI, etc.) if the second operand is not register
direct.

o All shift instructions with no count value assume a count of one.

. MOVE.L is optimized to MOVEQ if the immediate operand is defined and in the range -128 to
127. However, ADD and SUB are never translated to their quick forms; ADDQ and SUBQ must
be explicit.

3 1don’t think this applies to output of BSD object modules.

g Y

o L e ad S Y e ET O 8 November, 1994

Page 30 Madmac Macro Assembler

MADMAC will generate code for the Atari Jaguar GPU and DSP custom RISC (Reduced Instruction
Set Computer) processors. See the Jaguar Software Reference Manual - Tom & Jerry for a complete
listing of Jaguar GPU & DSP assembler mnemonics and addressing modes.

The following condition codes for the GPU/DSP JUMP and JR instructions are built-in:

Motorola-Style

CC (Carry Clear) = %00100
CS (Carry Set) = %01000
EQ (Equal) = %00010
MI (Minus) = %11000
NE (Not Equal) = %00001
PL (Plus) = %10100
HI (Higher) = %00101
T (True) = %00000

Intel-Style*

A = %00101
NBE = %00101
AE = %00100
NB = %00100
B = %01000
NAE = %01000
E (Equal) = %00010
NE (Not Equal) = %00001
NZ (Not Zero) = %00001
NS = %01110
S = %10010

The assembler provides “creature comforts” when it processes GPU/DSP mnemonics:

® In GPU/DSP code sections, you can use JUMP (Rx) in place of JUMP T,(Rx) and JR (Rx) in
place of JR T,(Rx)

4 Unfortunately, we have been unable to track down the definitions of all of the Intel-style condition code mnemonics,
although their meanings can be derived by comparison with the Motorola-style mnemonics. They are included primarily
for purposes of backwards compatibility with the GASM assembler.

8 November, 1994

Confidential Information 7R Property of Atari Corporation © 1994 Atari Corp. E

¢ Madmac Macro Assembler Page 31

Madmac tests all GPU/DSP restrictions, and corrects them whenever possible (such as inserting a
NOP instruction when needed).

o The "(Rx+N)" addressing mode for GPU/DSP instructions is optimized to "(Rx)" when "N" is
zero. A warning is displayed.

) Older versions of Madmac supported the use of the register names RO, R1, R2, ... R15 in 68000
code sections. This is no longer supported because of the conflict with Jaguar GPU/DSP register
names. Use DO to D7, AO to A7, and SP instead.

‘ Please note that the 6502 assembly capabilities of MADMAC have not been tested since the addition of
L the Jaguar GPU and DSP assembly modes. It is quite possible that the 6502 capabilities are broken in
current versions of MADMAC.

MADMAC will generate code for the Motorola 6502 microprocessor. This chapter describes extra
addressing modes and other features used to support the 6502.

As the 6502 object code is not linkable (currently there is no linker) external references may not be
made. (Nevertheless, MADMAC may reasonably be used for large, all-inclusive assemblies because of
its blinding speed.)

All standard 6502 addressing modes are supported, with the exception of the accumulator addressing
form, which must be omitted (e.g. "ror a" becomes "ror"). Five extra modes, synonyms for existing
ones, are included for compatibility with the Atari Coinop assembler.

empty implied or accumulator (e.g. tsx or ror)
expr absolute or zeropage
#expr immediate

(expr,x) indirect X

(expr),y indirect Y

(expr) indirect

eXpr,X indexed X

expr,y indexed Y

@expr(x) indirect X

@xpr(y) indirect Y

@expr indirect

X,eXpr indexed X

y,expr indexed Y

P While MADMAC lacks 'high" and 'low" operators, high bytes of words may be extracted with the shift
i ()or divide (/) operators, and low bytes may be extracted with the bitwise AND (a) operator.

9 © 1994 Atari Corp. Confidential Information ™K Property of Atari Corporation 8 November, 1994

Page 32 Madmac Macro Assembler

- See the descriptions of the .6502, .org, and .68000 directives in the Directives section for information
on how these directives affect 6502 assembly mode.

.org location

This directive is only legal in non-68000 sections. It sets the value of the location counter (or pc) to

location, an expression that must be defined, absolute, and less than $10000 (the upper limit of the 6502
address range.)

It is possible to assemble "beyond" the microprocessor's 64K address space, but attempting to do so will
probably screw up the assembler. DO NOT attempt to generate code like this:

org SFFFE
nop
nop
nop

the third nop in this example, at location $10000, may cause the assembler to crash or exhibit
spectacular schizophrenia. In any case, MADMAC will give no warning before flaking out.

This is a little bit of a kludge. An object file consists of a page map, followed by one or more page
images, followed by a normal Alcyon 68000 object file. If the page map is all zero, it is not written.

The page map contains a byte for each of the 256 256-byte pages in the 6502’s 64K address space. The
byte is zero ($0) if the page contained only zero bytes, or one ($01) if the page contained any non-zero
bytes. If a page is flagged with a one, then it is written (in order) following the page map.

The following code:

.6502

org $8000
.dc.b 1

org $8100
.dec.b 1

org $8300
.dc.b 1

end

will generate a page map that looks (to a programmer) something like:

8 November, 1994 Confidential Information 7P Property of Atari Corporation © 1994 Atari Corp. 'l

Madmac Macro Assembler Page 33

i '<$80 bytes of zero>

¥ 01 01 00 01

<$7C more bytes of zero, for $100 total>
<image of page $80>

<image of page $81>

<image of page $83>

Following the last page image is an Alcyon-format object file, starting with the magic number 3601A. It
may contain 68000 code (although that is probably useless), but the symbol table is valid and available
for debugging purposes. 6502 symbols will be absolute (not in text, data or bss sections). -

Most of MADMAC's error messages are self-explanatory. They fall into four classes: warnings about
situations that you (or the assembler) may not be happy about, errors that cause the assembler to not
generate object files, fatal errors that cause the assembler to abort immediately, and internal errors that

should never happen.?

You can write editor macros (or sed or awk scripts) to parse the error messages MADMAC generates.
) When a message is printed, it is of the form:

"filename", line line-number: message

The first element, a filename enclosed in double quotes, indicates the file that generated the error. The .
filename is followed by a comma, the word 'line", and a line number, and finally a colon and the text of
the message. The filename “(*top*)” indicates that the assembler could not determine which file had the

problem.

The following sections list warnings, errors and fatal errors in alphabetical order, along with a short
description of what may have caused the problem.

bad backslash code in string v
You tried to follow a backslash in a string with a character that the assembler didn't recognize.

Remember that MADMAC uses a C-language style escape system in strings.

label ignored
You specified a label before a macro, rept or endas directive. The assembler
is warning you that the label will not be defined in the assembly.

5 Of course, if you come across an internal error, Atari would appreciate it if you would contact Developer Support and let
us know about the problem.

© 1994 Atari Corp. Confidential Information “7PR Property of Atari Corporation 8 November, 1994

Page 34 Madmac Macro Assembler

- unoptimized short branch
This warning is only generated if the -s switch is specified on the command line. The message refers to a
forward, unsized long branch that you could have made short (.s).

cannot continue
As a result of previous errors, the assembler cannot continue processing. The assembly is aborted.

line too long as a result of macro expansion
When a source line within a macro was expanded, the resulting line was too long for MADMAC (longer
than 200 characters or so).

memory exhausted

The assembler ran out of mernory. You should (1) split up your source files and assemble them
seperately, or (2) if you have any ramdisks or RAM-resident programs (like desk accessories) decrease
their size so that the assembler has more RAM to work with. As a rule of thumb, pure 68000 code will
use up to twice the number of bytes contained in the source files, whereas 6502 code will use 64K of
RAM right away, plus the size of the source files. The assembler itself uses about 80K bytes. Get out
your calculator...

too many ENDMs
The assembler ran across an endm directive when it wasn 't expecting 1o see one. The assembly is
aborted. Check the nesting of your macro definitions - you probably have an extra endm.

.cargs syntax
Syntax error in .cargs directive.

comm symbol already defined §
You tried to .comm a symbol that was already defined. i

.ds permitted only In BSS
You tried to use the .ds directive in the text or data section.

.init not permitted in BSS or ABS
You tried to use .init in a BSS or ABS section.

-org permitted only in .6502 section -i,
You tried to use .org in a 68000 section.

Cannot create: filename
The assembler could not create the indicated filename.

8 November, 1994 Confidential Information ‘7R Property of Atari Corporation © 1994 Atari Corp.

Madmac Macro Assembler

External quick reference
You tried to make the immediate operand of a moveq, subq or addq instruction external.

. PC-relative expr across sections
" You tried to make a PC-relative reference to a location contained in another section.

[[bwsl] must follow .’ in symbol
. You tried to follow a dot in a symbol name with something other than one of the four characters ‘B’,

£w1, cs,, or ‘L,.

. addressing mode syntax
" You made a syntax error in an addressing mode.

- assert failure
* One of your assert directives failed!

bad (section) expression
You tried to mix and match sections in an expression.

L bad 6502 addressing mode
k. The 6502 mnemonic will not work with the addressing mode you specified.

bad expression
There's a syntax error in the expression you typed.

bad size specified
You tried to use an inappropriate size suffix for the instruction. Check your 68000 manual for allowable

sizes.

bad size suffix
You can't use .h (byte) mode with the movem instruction.

cannot .globl local symbol
You tried to make a confined symbol global or common.

cannot initialize non-storage (BSS) section
You tried to generate instructions (or data, with the dc directive) in the BSS or ABS section.

cannot use '.h' with an address register
You tried to use a byte-size suffix with an address register. The 68000 does not perform byte-sized

address register operations.

directive illegal in .6502 section
You tried to use a 68000-oriented directive in the 6502 section.

Page 36 ‘ Madmac Macro Assembler

divide by zero
The expression you typed involves a division by zero.

expression out of range
The expression you typed is out of range for its application.

external byte reference
You tried to make a byte-sized reference to an external symbol, which the object file format will not
allow.

external short branch
You tried to make a short branch to an external symbol, which the linker cannot handle.

extra (unexpected) text found after addressing mode
MADMAC thought it was done processing a line, but it ran up against “extra” stuff. Be sure that any
comment on the line begins with a semicolon, and check for dangling commas, etc.

forward or undefined assert g
The expression you typed after a assert directive had an undefined value. Remember that MADMACis §
a one pass assembler. ‘

hit EOF without finding matching endif :
The assembler fell off the end of last input file without finding an .endif to match an .if. You probably
forgot an .endif somewhere.

illegal 6502 addressing mode ,
The 6502 instruction you typed doesn't work with the addressing mode you specified. 4

illegal absolute expression
You can't use an absolute-valued expression here.

illegal bra.s with zero offset [
You can't do a short branch to the Very next instruction (read your 68000 manual). ‘

illegal byte-sized relative reference
The object file format does not permit bytes contain relocatable values; you tried to use a byte-sized
relocatable expression in an immediate addressing mode.

illegal character 1
Your source file contains a character that MADMAC doesn't allow. (Most control characters fall into L
this category.) 1

illegal initialization of section
You tried to use .dc or .dch in the BSS or ABS sections.

8 November, 1994 Confidential Information 7P Property of Atari Corporation © 1994 Atari Corp. :

Madmac Macro Assembler Page 37

legal relative address
The relative address you specified is illegal because it belongs to a different section.

illegal word relocatable (in PRG mode)
You can't have anything other than long relocatable values when you're generating a .PRG file.

inappropriate addressing mode
The mnemonic you typed doesn't work with the addressing modes you specified. Check your 68000

manual for allowable combinations.

invalid addressing mode
The combination of addressing modes you picked for the movem instruction are not implemented by the

68000. Check your 68000 reference manual for details.

invalid symbol following " "
What followed the ** wasn't a valid symbol at all.

mis-nested .endr
The assembler found a .endr directive when it wasn't prepared to find one. Check your repeat-block

nesting.

mismatched .else
The assembler found a .else directive when it wasn't prepared to find one. Check your conditional

assembly nesting.

mismatched .endif
The assembler found a .endif directive when it wasn't prepared to find one. Check your conditionai

assembly nesting.

missing ‘=*

missing ‘}’

missing argument name
missing close parenthesis)’
missing close parenthesis ']’
missing comma

missing filename

missing string

missing symbol

missing symbol or string
The assembler expected to see a symbol/filename/string (etc...), but found something else instead. In

most cases the problem should be obvious.

misuse of ¢.’, not allowed in symbols
" You tried to use a dot (.) in the middle of a symbol name.

© 1994 Atari Corp. Confidential Information “7PR Property of Atari Corporation 8 November, 1994

Page 38 Madmac Macro Assembler

mod (%) by zero
The expression you typed involves a modulo by zero.

muitiple formal argument definition
The list of formal parameter names you supplied for a macro definition includes two identical names.

multiple macro definition
You tried.to define a macro which already had a definition.

non-absolute byte reference
You tried to make a byte reference o a relocatable value, which the object file format does not allow.

non-absolute byte value
You tried to dc.b or deb.b a relocatable value. Byte relocatable values are not permitted by the object
file format.

register list order
You tried to specify a register list like D7-D0, which is illegal. Remember that the first register number
must be less than or equal to the second register number.

register list syntax
You made an error in specifying a register list for a .reg directive or a movem instruction.

symbeol list syntax
You probably forgot a comma between the names of two symbols in a symbol list, or you left a comma
dangling on the end of the line.

syntax error
This is a “catch-all” error message for errors which are not covered by other messages.

undefined expression
The expression has an undefined value because of a forward reference, or an undefined or external
symbol.

unimplemented addressing mode
You tried to use 68020 "square-bracket" notation for a 68020 addressing mode. MADMAC does not
support 68020 addressing modes.

unimplemented directive
You have found a directive that didn't appear in the documentation. It doesn't work.

unimplemented mnemonic
You've found an assembler (or documentation) bug.

unknown symbol following ~*
You followed a ** with something other than one of the names defined, referenced or streq.

8 November, 1994 Confidential Information ‘7P Property of Atari Corporation © 1994 Atari Corp. ‘

Madmac Macro Assembler Page 39

unsupported 68020 addressing mode
‘The assembler saw a 68020-type addressing mode. MADMAC does not assemble code for the 68020 or
68010.

unterminated string
You specified a string starting with a single or double quote, hut forgot to type the closing quote.

write error
The assembler had a problem writing an object file. This is usually caused by a full disk, or a bad sector
on the media.

i
]

	Introduction
	The Command Line
	Command Line Switches
	Using Madmac
	Interactive Mode
	Things You Should Be Aware Of
	Forward Branches
	Text File Format
	Statements
	Equates
	Symbols and Scope
	Keywords
	Constants
	Strings
	Register Lists
	Expressions
	Types
	Unary Operations
	Binary Operations
	Special Forms
	Example Expressions

	Directives
	Notes On Assembly Directives

	Macros
	Parameter Substitution
	Macro Invocation
	Example Macros
	Repeat Blocks

	68000 Mode
	Addressing Modes
	Branches
	Linker Constraints
	Optimizations and Translations

	Jaguar GPU/DSP Mode
	Condition Codes
	Optimizations and Translations

	6502 Support
	Warning
	Object Code Format

	Error Messages
	When Things Go Wrong
	Warnings
	Fatal Errors
	Errors

