New Synth Specification
0.90
Paul Foster and John Strawn
Mar. 10, 1995
� TOC \o "1-3" �1. Introduction	� GOTOBUTTON _Toc319123698 � PAGEREF _Toc319123698 �2��
1.1 Objective	� GOTOBUTTON _Toc319123699 � PAGEREF _Toc319123699 �2��
1.2 Overview of Capabilities	� GOTOBUTTON _Toc319123700 � PAGEREF _Toc319123700 �2��
1.2.1 Synthesizer	� GOTOBUTTON _Toc319123701 � PAGEREF _Toc319123701 �2��
1.2.2 MIDI	� GOTOBUTTON _Toc319123702 � PAGEREF _Toc319123702 �3��
1.2.3 Interface	� GOTOBUTTON _Toc319123703 � PAGEREF _Toc319123703 �3��
1.3 Pipe lining	� GOTOBUTTON _Toc319123704 � PAGEREF _Toc319123704 �3��
2. Definitions and constants	� GOTOBUTTON _Toc319123705 � PAGEREF _Toc319123705 �3��
2.1 Terminology	� GOTOBUTTON _Toc319123706 � PAGEREF _Toc319123706 �3��
2.2 Register use	� GOTOBUTTON _Toc319123707 � PAGEREF _Toc319123707 �4��
2.2.1 Bank 0	� GOTOBUTTON _Toc319123708 � PAGEREF _Toc319123708 �4��
2.2.2 Bank 1	� GOTOBUTTON _Toc319123709 � PAGEREF _Toc319123709 �5��
2.3 Compile-time constants	� GOTOBUTTON _Toc319123710 � PAGEREF _Toc319123710 �6��
2.3.1 System constants	� GOTOBUTTON _Toc319123711 � PAGEREF _Toc319123711 �6��
2.3.2 Non changing Register definitions	� GOTOBUTTON _Toc319123712 � PAGEREF _Toc319123712 �6��
2.3.3 Offsets	� GOTOBUTTON _Toc319123713 � PAGEREF _Toc319123713 �7��
3. Modules	� GOTOBUTTON _Toc319123714 � PAGEREF _Toc319123714 �7��
3.1 Introduction	� GOTOBUTTON _Toc319123715 � PAGEREF _Toc319123715 �7��
3.2 Module Pointer Table	� GOTOBUTTON _Toc319123716 � PAGEREF _Toc319123716 �7��
3.3 Waveform Env	� GOTOBUTTON _Toc319123717 � PAGEREF _Toc319123717 �8��
3.4 Mixer	� GOTOBUTTON _Toc319123718 � PAGEREF _Toc319123718 �8��
3.4.1 Calling the Mixer	� GOTOBUTTON _Toc319123719 � PAGEREF _Toc319123719 �8��
3.4.2 Mixer conventions and data structures	� GOTOBUTTON _Toc319123720 � PAGEREF _Toc319123720 �8��
3.4.3 Mixer code outline	� GOTOBUTTON _Toc319123721 � PAGEREF _Toc319123721 �9��
4. Unit generators	� GOTOBUTTON _Toc319123722 � PAGEREF _Toc319123722 �9��
4.1 Oscillator	� GOTOBUTTON _Toc319123723 � PAGEREF _Toc319123723 �9��
4.2 Envelope	� GOTOBUTTON _Toc319123724 � PAGEREF _Toc319123724 �10��
4.2.1 Looping vs. non-looping envelopes.	� GOTOBUTTON _Toc319123725 � PAGEREF _Toc319123725 �11��
4.3 LFO	� GOTOBUTTON _Toc319123726 � PAGEREF _Toc319123726 �11��
4.4 Modulators	� GOTOBUTTON _Toc319123727 � PAGEREF _Toc319123727 �12��
4.4.1 Pan_mod	� GOTOBUTTON _Toc319123728 � PAGEREF _Toc319123728 �12��
4.4.2 Pitch_mod	� GOTOBUTTON _Toc319123729 � PAGEREF _Toc319123729 �12��
4.4.3 Dist_mod	� GOTOBUTTON _Toc319123730 � PAGEREF _Toc319123730 �12��
4.4.4 PulseWidth_mod	� GOTOBUTTON _Toc319123731 � PAGEREF _Toc319123731 �12��
4.4.5 Reverb_mod	� GOTOBUTTON _Toc319123732 � PAGEREF _Toc319123732 �12��
4.5 Filter	� GOTOBUTTON _Toc319123733 � PAGEREF _Toc319123733 �13��
4.6 Attenuator	� GOTOBUTTON _Toc319123734 � PAGEREF _Toc319123734 �13��
4.6.1 R_FLAGS Register layout	� GOTOBUTTON _Toc319123735 � PAGEREF _Toc319123735 �13��
4.6.2 Voice Shut Off	� GOTOBUTTON _Toc319123736 � PAGEREF _Toc319123736 �14��
4.7 Delay_Reverb	� GOTOBUTTON _Toc319123737 � PAGEREF _Toc319123737 �15��
5. Parameters	� GOTOBUTTON _Toc319123738 � PAGEREF _Toc319123738 �15��
5.1 Parameter List	� GOTOBUTTON _Toc319123739 � PAGEREF _Toc319123739 �15��
5.2 Parameter location and uses	� GOTOBUTTON _Toc319123740 � PAGEREF _Toc319123740 �15��
5.3 Passing parameters	� GOTOBUTTON _Toc319123741 � PAGEREF _Toc319123741 �16��
5.4 VT_DIR_P	� GOTOBUTTON _Toc319123742 � PAGEREF _Toc319123742 �17��
6. Voices	� GOTOBUTTON _Toc319123743 � PAGEREF _Toc319123743 �17��
6.1 Voice Table	� GOTOBUTTON _Toc319123744 � PAGEREF _Toc319123744 �17��
6.1.1 Module warping and Voice types	� GOTOBUTTON _Toc319123745 � PAGEREF _Toc319123745 �18��
6.2 Voice priority	� GOTOBUTTON _Toc319123746 � PAGEREF _Toc319123746 �18��
6.3 Voice Stealing and Note Off	� GOTOBUTTON _Toc319123747 � PAGEREF _Toc319123747 �19��
7. Memory Requirements	� GOTOBUTTON _Toc319123748 � PAGEREF _Toc319123748 �19��
8. Data representation	� GOTOBUTTON _Toc319123749 � PAGEREF _Toc319123749 �20��
8.1 Pitches	� GOTOBUTTON _Toc319123750 � PAGEREF _Toc319123750 �20��
8.1.1 Tuning	� GOTOBUTTON _Toc319123751 � PAGEREF _Toc319123751 �21��
8.2 Waveform storage	� GOTOBUTTON _Toc319123752 � PAGEREF _Toc319123752 �21��
8.2.1 Samples	� GOTOBUTTON _Toc319123753 � PAGEREF _Toc319123753 �21��
8.2.2 Sample Buddy theory	� GOTOBUTTON _Toc319123754 � PAGEREF _Toc319123754 �21��
8.2.3 Loading Samples During Vblank	� GOTOBUTTON _Toc319123755 � PAGEREF _Toc319123755 �21��
8.3 External Fixed Waves	� GOTOBUTTON _Toc319123756 � PAGEREF _Toc319123756 �22��
9. OUTPUT BUFFERS	� GOTOBUTTON _Toc319123757 � PAGEREF _Toc319123757 �22��
10. MIDI	� GOTOBUTTON _Toc319123758 � PAGEREF _Toc319123758 �22��
10.1 Event Buffers	� GOTOBUTTON _Toc319123759 � PAGEREF _Toc319123759 �22��
10.2 MIDI Events	� GOTOBUTTON _Toc319123760 � PAGEREF _Toc319123760 �22��
10.2.1 Note On	� GOTOBUTTON _Toc319123761 � PAGEREF _Toc319123761 �23��
10.2.2 Note Off	� GOTOBUTTON _Toc319123762 � PAGEREF _Toc319123762 �23��
10.2.3 Pan	� GOTOBUTTON _Toc319123763 � PAGEREF _Toc319123763 �23��
10.2.4 Controller Changes	� GOTOBUTTON _Toc319123764 � PAGEREF _Toc319123764 �24��
10.3 MIDI parser routine	� GOTOBUTTON _Toc319123765 � PAGEREF _Toc319123765 �24��
11. Using the Synth in a game	� GOTOBUTTON _Toc319123766 � PAGEREF _Toc319123766 �24��
11.1 Music	� GOTOBUTTON _Toc319123767 � PAGEREF _Toc319123767 �24��
11.2 Sound effects	� GOTOBUTTON _Toc319123768 � PAGEREF _Toc319123768 �24��
12. Jaguar Interface	� GOTOBUTTON _Toc319123769 � PAGEREF _Toc319123769 �25��
13. Using the synth with CD-ROM	� GOTOBUTTON _Toc319123770 � PAGEREF _Toc319123770 �25��
13.1 Getting Sound Data Off the CD-ROM	� GOTOBUTTON _Toc319123771 � PAGEREF _Toc319123771 �25��
13.2 Synchronizing the CD Audio	� GOTOBUTTON _Toc319123772 � PAGEREF _Toc319123772 �25��
13.2.1 CD control program communication	� GOTOBUTTON _Toc319123773 � PAGEREF _Toc319123773 �26��
14. Appendix 1. Code examples.	� GOTOBUTTON _Toc319123774 � PAGEREF _Toc319123774 �26��
�

Introduction
Objective	
Re-write the synth to get better performance as well as providing a user friendly interface for sound development and MIDI real time performance features.
Overview of Capabilities	
Synthesizer
a. Polyphony
i. 12 voices or more consistently @ 20776 Hz Sample rate
ii. Polyphony for Sample rate trade off: No code is hard-wired to the sample rate. If the sample rate is increased, polyphony reduces. If audible artifacts occur when polyphony reduces, then the parse program settings must be changed to lower the allowed polyphony.
iii. Polyphony for external module trade off: We can add modules that do calculations instead of samples; they can take a voice slot.
b. Types
i. Fixed wave and RAM wave with envelope
ii. FM with envelope (x2 envelopes possibly)
iii. One-shot RAM wave (no extra envelope needed, see Section 4.1)
To be added later: (Note: filtering, reverb, and delay require a more generalized patching scheme than what we envision here.)
iv. Filter with envelope (+ waveform detuning)
v. Sample 1-shot for sound effects
vi. Digital effects i.e. Reverb and Delay
MIDI
a. Real Time
i. note-on, note-off
ii. Velocity
iii. Multi-channel receive
iv. Pan (takes cpu time)
v. Volume (takes cpu time)
vi. Pitch Bend (takes cpu time)

b. Sysex
i. Module editing.
ii. Performance/ Module load and save
Paul: I understand Hans-Martin is producing a separate document discussing the sys ex.
Interface
a. Jaguar
i. Performance tools i.e. DSP time left
ii. MIDI receive/send messages.

b. Computer
i. Module editor librarian with GUI
ii. Standard sequencer playback
iii. examine internal state of synth obtained through sysex				
Pipe lining
The synthesizer will be based loosely around a time slicing concept. Each module will process several samples in one pass to save multiple loads and stores in DSP RAM. In order to avoid scoreboard conflicts, code to calculate several samples will be interleaved inside a unit generator.

The waves that will be played back will be loaded into a buffer in DSP RAM from either DRAM or Cartridge/CD ROM.
Definitions and constants
Terminology
Sample:	 	a single sample, quantized as a 16- or 8-bit number.

Waveform:	 any list of samples to be played.

fixed wave:	 128-sample long waveform that lives in DSP ROM or DSP Ram.

RAM wave:	a sampled sound in RAM.

Module:	The smallest unit available to the usual music arranger. Consists of one or more unit generators. Parameters are contained in parameter list.

Parameter list:	list of parameters to be used by the synth to make a sound

Sound:	 	actual audio output

Unit generator:	The fundamental building block for modules. Examples: mixer, envelope, oscillator.
Register use
Bank 0

Bank 0 registers are dedicated to interrupt service routines and to the storage of constants.

	Interpolating Oscillators Register Locations
Number�Description�REG_EQU Name��r0����r1����r2����r3����r4����r5����r6����r7����r8����r9 ����r10����r11 ����r12 ����r13 ����r14����r15����r16 ����r17 ����r18 ����r19 ����r20 ����r21 ����r22 ����r23 �Last inst. where we were before isr�A_LAST_INST_P��r24 �Dflags data for i2s_isr�A_DFLAGS_D��r25 �Packed sample to put into DAC’s�A_SAMPLE��r26 �Circular buffer pointer, point to beginning of�A_BUFFPTR��r27�Right DAC address location�A_RDAC��r28 �Read count (buff_p + Read = sample location)�A_READCOUNT��r29�Dflags register location�A_DFLAGS_P��r30�Temporary data register�A_TEMP1��r31�Stack pointer�A_STACK_P������.
Bank 1

	Interpolating Oscillators Register Locations
Number�Description�REG_EQU Name��r0�Flags register�R_FLAGS��r1�Pointer to waveform�R_WAVE_P��r2�Pitch�R_PITCH��r3�Loop end / sample end�R_LOOP_END��r4�loop length�R_LOOP_LENGTH��r5�lower address, sample 0�R_SAMP1_P��r6�lower address, sample 1�R_SAMP2_P��r7�lower address, sample 2�R_SAMP3_P��r8�lower address, sample 3�R_SAMP4_P��r9 �sample buddy 0�R_SMPBUD1��r10�sample buddy 1�R_SMPBUD2��r11 �sample buddy 2�R_SMPBUD3��r12 �sample buddy 3�R_SMPBUD4��r13 �copy of voice table pointer�R_VT_DIR_P��r14�voicetable pointer�R_VT_IND_P��r15�pointer to module pointer table�R_MDTAB_P��r16 �fraction for interpolation�R_FRACTION��r17 �current_location�R_CURR_LOC��r18 �Address mask (FFFFF000)�R_ADDR_MASK��r19 �Fraction mask (00000FFF)�R_FRAC_MASK��r20 �End with sample 0 ; interpolator sample 0�R_SAMPLE1��r21 �End with sample 1 ; interpolator sample 1�R_SAMPLE2��r22 �End with sample 2 ; interpolator sample 2�R_SAMPLE3��r23 �End with sample 3 ; interpolator sample 3�R_SAMPLE4��r24 �End with sample 4�R_SAMPLE5��r25 �End with sample 5�R_SAMPLE6��r26 �End with sample 6�R_SAMPLE7��r27 �End with sample 7�R_SAMPLE8��r28 �Temp variable 1�R_TEMP1��r29�Next jump location�R_MDTAB_JUMP��r30�Current voice number�R_VOICE_NUM��r31�Unavailable��������	Envelope Register Locations
Number�Description�REG_EQU Name��r0�Flags register�R_FLAGS��r1�Envelope location�R_ENV_LOC��r2�Current value of envelope�R_ENV_VALUE��r3�Slope increment�R_SLOPE_INC��r4�Destination target value�R_DEST��r5�Used to determine point in envelope�R_ENV_CHECK��r6�Effective BCLR fo R_FLAGS�R_ENV_FLAGS��r7�Used for looping�R_ETEMP1��r8����r9 ����r10����r11 �Open for usage���r12 �Open for usage���r13 �Copy of voice table pointer�R_VT_DIR_P��r14�Voicetable location�R_VT_IND_P��r15�Module pointer table location�R_MDTAB_P��r16 �Open for usage���r17 �Open for usage���r18 �Open for usage���r19 �Open for usage���r20 �Unavailable���r21 �Unavailable���r22 �Unavailable���r23 �Unavailable���r24 �Unavailable���r25 �Unavailable���r26 �Unavailable���r27 �Unavailable���r28 �Open for usage���r29�Next jump location�R_MDTAB_JUMP��r30�Unavailable���r31�Unavailable�������Compile-time constants
System constants
PASS_LEN 		EQU 8			; # of samples produced by each unit
							; generator in each pass
VOICE_TABLE_ENTRY_LEN EQU 16		; size of voice table entry
VOICE_TABLE_NUM_ENTRY EQU 21		; number of entries in voice table
VOICE_OFF 		EQU VT_RET_LOC	; value indicating "this voice turned off"
Non changing Register definitions

R_FLAGS	 		REGEQU R1	; Contains voice number and flags such as “done.”
R_VT_IND_P			REGEQU R14 ; base address of this module in voice table.
R_MDTAB_P			REGEQU R15	; The module is arranged so that items to be written
						; back to the voice table are reached by 									; successively
						; using ADDQ to increment this value. This register
						; initialized to R_VT_IND_P at the start of the
						; module.
R_VT_DIR_P			REGEQU R13	; When the module is called, initialized to
 						; R_VT_IND_P. Thereafter successively
						; incremented to pluck parameters out of the voice 							; table. 						
R_MDTAB_JUMP		REGEQU R29	; The next unit generator location is loaded into this 						; register from location held in R15 above.

R_VOICE_NUM			REGEQU R30	; This value is the current voice number that this 							; module is generating it is used by the attenuator 							; and mixer to handle the voice buffering
Offsets
If it is required to read from or write to the voice table in the middle of the module, there are two options. 1) a dedicated
R_VT_DIR_P is incremented using ADDQ's, as discussed above. Or:

	store rXXX,(R_VT_IND_P+yyy)

where yyy is a compile-time constant given below.

Osc#1:
CURR_LOC			EQU	4

Osc #2:
CURR_LOC2		 	EQU 	7	

Env #1:

ENV
1
_VALUE	
	
	EQU	9

Env #2:

ENV
2
_VALUE	
	
	EQU	12

Env #3:

ENV
3
_VALUE	
	
	EQU	15

Modules
Introduction
A module is a group of one or more unit generators invoked in succession to make a sound. Each of the unit generators processes 8 samples at a time. Each module will consist of unit generator calls and some glue code. A unit generator is an oscillator, an envelope, a filter, etc... All modules must start with an oscillator and end with an attenuator. There can be any number of unit generators between these two; the number of unit generators in a module is limited only by parameter list memory space and /or DSP time.
Module Pointer Table

A module pointer table is a list of pointers to unit generators in the order in which they will be called to make a sound.
For example:
module 1 = waveform with envelope

module1:
	dc.l	OSC1				; first call an interpolated looping Ram wave oscillator
	dc.l	ENV1				; then an adsr envelope, env # and location will be in the voice table
	dc.l	ATTEN1			; then an attenuator that multiplies vol * a modulator and attenuates
	
R_MDTAB_P will always point to the current pointer table.
At the end of each unit generator will be the three instructions

load (R_MDTAB_P), R_MDTAB_JUMP
jump (R_MDTAB_JUMP)
addq #4,R_MDTAB_P

This will cause the jump to the next unit generator.
Waveform Env
	Call oscillator
		Oscillator returns 8 interpolated samples in r20 - r27 (R_SAMPLE1 - R_SAMPLE8)
		Oscillator returns done flag in r0 (R_FLAGS)
		Oscillator returns new location in r17 (R_CURR_LOC)
	Call env
		Envelope returns new value in r2 (R_ENV_VALUE)
		Envelope returns done flag in r0 (R_FLAGS)
		Envelope returns position in r1 (R_ENV_LOC)
		Store r1 and r2
	Call attenuator
		Load env value into r2 (R_ENV_VALUE)
		Attenuator uses r2 and multiplies it into r20 - r27 (R_SAMPLE1 - R_SAMPLE8)
		Attenuator returns and stores all samples attenuated into voice # buffer.
	Done.
Mixer
Calling the Mixer
The mixer is a one-unit generator module. The mixer’s unit generator pointer in DSP Ram will be put at the end of the voice table, followed by three parameters. (This call to the mixer module replaces the 0 in the old synth that signified the end of voice table.)

	dc.l	MIXER_LOC, NUM_VOICES, VOICE_BUFF_START, PAN_TABLE_LOC

The mixer is performed for every voice, up to the number of voices given by the NUM_VOICES parameter in the mixer call. Each voice is mixed whether it is on or off, 8 samples at a time.
Mixer conventions and data structures
Pan is a number between 0-127 as in MIDI (see also the section on Pan, below):

0	Full left Pan
3f ,40	Center
7f	Full left pan

The left Pan value for each voice will be loaded from the pan table and stored in packed registers r1-r6 as follows:

r0 upper/lower	r1 upper/lower	...	r5 upper/lower
L pan 1/L pan 2	L pan 3/L pan 4	...	L pan 11/L pan 12

Voice samples will be stored in RAM as follows:
	
Voice#�Smp #���������1�1.1�1.2�1.3�1.4�1.5�1.6�1.7�1.8��2�2.1�2.2�2.3�...�...�...�...�...��3�3.1�3.1�...�...�...�...�...�...��4�4.1�...�...�...�...�...�...�...��...�...�...�...�...�...�...�...�...��12�12.1�...�...�...�...�...�...�...��Mixer code outline

All of the pan values for the voice table will be stored in a special location (see section on Pan, below). The mixer loads the packed PAN values for each of the voices into registers. Then the mixer does a matrix multiply on the samples stored in RAM.

For example, if we have 4 voices:

	Initialize matrix address register, matrix control register
Repeat 8 times:
	load PAN_TABLE_LOC,r1	; upper 16 bits Lpan voice1 / lower 16 bits Lpan voice 2
	load PAN_TABLE_LOC+1,r2	; upper 16 bits Lpan voice3 / lower 16 bits Lpan voice 4
	mmult r1,r20		; pan and mixed data in r20 for Left channel
	xor #007f007f,r1		; gives us Rpan values by usual
	xor #007f007f,r2 		; one’s complement trick.
	mmult r1,r21 		; pan and mixed data in r21 for Right channel

R20and R21can be shifted right relative to the number of voices playing to emulate compression/expansion.

	shlq	#16,R20
	and	#0000FFFF,R21
	or	R20,R21
	store R21,(sample_buffer)
	addq 	#4,sample_buffer
	update value in MTXADDR
Unit generators
Oscillator

There will be oscillators that will capture 16 samples and interpolate them to 8 samples to be played back from any unit generator. The data will be loaded into individual registers first and then interpolated. The interpolating oscillators will be a two pass type of oscillator. This is necessary to keep all variables in registers without having to reload them. Non-interpolating oscillators will do all eight samples in one pass.

To handle looping, we use “look-ahead looping.” That is, we start with the address for sample #7 and see if that is past the end of the loop. If it isn’t, then we don’t bother with samples 6-0. If sample #7’s address is past the end of the loop, then we correct the
address and go on to sample # 6, and so on.

There will be these types of oscillators:

1) Reversible, looping, interpolating RAM WAVE
2) Non-interpolating (Or one shot), looping RAM WAVE
3) Interpolating Fixed Wave
4) Non-Interpolating Fixed Wave
5) Two Operator FM Fixed Wave
6) PolyWave (2 Fixed waves from the choice of Square, Sawtooth, Noise) effectively interpolated.
7) Compressed version of 1
8) Compressed version of 2

“Compressed” here means that square the sample converting it from 8-bit to 16-bit.

The fixed wave oscillator will have one extra step included in it to double the capacity for user waves. The DSP can only load long words from internal memory. If we pack two samples into one long word then we can take full advantage of the RAM space by adding one instruction to check if it is an odd or even align fixed wave and one shift instruction per sample.
That code is:

	BTST	#30,R_WAVE_P	; 0 = even , 1 = odd
	JR	EQ,even_wave	;
	NOP

odd_wave:

	SHARQ	#16,rsample	; where r27 is either 16 or 0.

even_wave:

	do interpolation.
Envelope

There will be two types of envelopes slope - destination looped envelopes and slope - destination ADSR type envelopes. The envelopes can have as many points as needed. Points can be added or deleted as desired. On average 2-6 points should be sufficient. The envelopes will be processed once for every 8 samples.

	Envelopes will be stored in the format:
	Destination #1 in 0 - 32767*32767 (15.15bit)
	Slope increment #1 in 15.15	(30bit)
	Destination #2
	Slope increment #2
	Etc.

	The max. envelope value will be 32767:
	There will be a velocity multiplier:
	Max. velocity from MIDI = 127
	Minimum = 0

	Envelope output = (Velocity multiplier * Envelope value) >> 15
	
	The slope destination envelope changes every 8 samples.
	For human use the envelope will be drawn in Amplitude time.

	�EMBED MSDraw * mergeformat���
	
The amplitude will range from 0-32767. On the GUI, the user will see amplitude range from 0 to 1.
The time will be in milliseconds.
Because the synth works in groups of eight the closest approximation to 1 ms is 24 samples so the envelope will react somewhat slower than expected.
Therefore the envelope will calculate its slope from the
parameters amplitude and time.
	
Example:

Point 0 = 0
Point 1 = 30000
Time to reach Point 1 from Point 0 = 5 ms

slope increment = (30000 - 0) / 5ms = 6000

5 ms = 15 envelope calculations where
24 steps ~ 1 ms	= 3 envelope increments
	
slope increment in 15.15 = 6000 /3 = 2000 = 3E80000 Hex

3E80000 * 0F (15 decimal) = 3A980000
3A980000 >> 15 = 7530 = 30000 = Destination as expected.
Looping vs. non-looping envelopes.
	
A non looping envelope will have a sustain point at which the slope is zero and the destination is SUSTAIN_DEST (where SUSTAIN_DEST is a number like $40000000 which is impossible for the envelope destination code to reach). The envelope will sit at this value until there is a note off. After the note off, the envelope leaves the sustain point and the release slope value is used. When the envelope hits 0 the done flag bit is set. The attenuator uses this flag to determine whether a voice should be turned off or not.

A looping envelope compares its location in the envelope to the loop point (same as SUSTAIN_DEST). If the two are equal the loop length will be subtracted from the envelope location. The loop length will be stored in the lower bits of the destination point.

For Example: To make an envelope go back 4 points

	$40000004 + 1 (for the loop point slope) = $40000005

	This number will then be shlq #2 to long align it.

When a note off occurs the envelope will immediately head to zero using the release slope value as its increment.

LFO

There will be a non-interpolating LFO that updates once every 8 samples just like the envelope. The data from the LFO will be represented in +/- 32767 and must be converted to a 15.15 number from the values of 0-32767.

Therefore +32768 must be added to the LFO output to make LFO min = 0.
Then it must be left shifted to align it to 15.15.
Since the new LFO max is 65535 or $0000FFFF the value must be left shifted by 14 bits.

This will make the number useable by the modulation unit generators.

The frequency in Hertz of the LFO will be 1/8 the frequency of a normal oscillator.

For example: a value of $20 for pitch will yeild a LFO frequency of

Freq = (20776 / (128 * 4096)) * 32 ($20 Hex) / 8

 = 0.15 Hz

Modulators

There will be several modulators. The modulator unit generators can be used two ways. They can directly follow an envelope or a LFO in the module pointer table and use the value that is currently in R2 or they can be any where in the pointer table and directly use one of the envelope values from the offsets to R_VT_IND_P mentioned later. If a modulator is to use the LFO output it must directly follow that unit generator in the module pointer table.

Pan_mod
This unit generator will modify the pan value for a given voice in the pan table. It uses R_VOICE_NUM and R_ENV_VALUE or R_LFO_VALUE. Pan_mod takes the value in R_LFO or R_ENV and aligns it to 7 bits as in MIDI and then uses R_VOICE_NUM to insert in the correct pan table location.
$007FFFFF and below = full left pan
$1F800000 = center pan
$3F800000 and above = full right pan

Pitch_mod

This unit generator will modify the pitch of a voice. It uses R_ENV_VALUE or R_LFO_VALUE. Pitch_mod takes the value in R_ENV or R_LFO and multiplies pitch after storing the original pitch. It gets the original pitch value from a table set up from note on MIDI event. After the calculation it stores it dircetly to the voice table using VT_IND_P.

Values still TBD.
Dist_mod

This unit generator is a distortion simulator and will modify the eight samples held in R20 - R27. It can get its modulation value from either the preceding ENV or LFO, or it can get it directly from env3_value offset. It takes R_ENV or R_LFO value and multiplies it to R20 - R27 and then performs a sat16s.
0000FFFF and below = no distortion
3FFF7XXX = full distortion
3FFF8000 and above = full distortion and negation
PulseWidth_mod
This unit generator is a pulse width modulation simulator and will modify the eight samples held in R20 - R27. It can get its modulation value from either the preceding ENV or LFO, or it can get it directly from the env3_value offset. It adds the value from R_ENV or R_LFO directly to R20 - R27 as a DC offset. The PulseWidth_mod then calls the Dist_mod unit generator at full (variable) distortion to turn the samples in to either fully positive or negative (+/- 32767) values.
This unit generator works best with a Fixed wave carrier and an LFO modulator.

Reverb_mod

This unit generator will modify either the delay tap locations or the feedback amounts of the Reverb/Delay unit.

Still TBD.
Filter

There will be a 12dB per octave two pole, two zero filter with resonance. The filter uses a pre-calculated table 64 entries long of two of the four parameters necessary to produce such a filter. The table holds the packed parameters -Beta/Gamma in the upper/ lower 16 bits of a long word. Alpha and 2* Alpha, the other two parameters, are calculated from -Beta/Gamma.
Resonance and frequency values are pre-determined so there will be a need for several tables for different resonance value and/or frequency locations. The filter will use the value held in Env#2 value to determine the current location of the filter.
Attenuator

The attenuator is responsible for multiplying the 8 samples by an attenuation amount. This amount will most likely be determined by the module volume level, an envelope level, and velocity level, or any combination of the three.

The attenuator will also be responsible for stealing voices and clearing out sample buffers after notes have been turned off. It will accomplish this by reading the stolen bit from the R_FLAGS register.

Algorithm:

	get volume
	mult volume * modulator (envelope & velocity)
	mult new_volume * sample 1
	mult new_volume * sample 2

	mult new_volume * sample 7

	if (stolen bit set) jump to stolen label:
	normal:
		sharq #15, sample1
		sharq #15, sample2
	
		sharq #15, sample3

		jump done:

	stolen label:
		sharq #16, sample1
		sharq #17, sample2
		sharq #18, sample3
		sharq #19, sample4
	
		sharq #23, sample7

		if (volume = 0)
			voice is stolen; put VT_RETURN pointer in voice type in voice table entry
		shrq #8, volume
		store volume
	done:
	R_FLAGS Register layout
	Guesses at R_FLAGS registers bits

Number�Description�Usage��
b0-b7
�Modulation amount�Used by the LFO��
b8����b9 ����b10����b11 ����
b12 �
�
�
�b13 �
�
�
�b14�
�
�
�b15����b16 �
Copy of OPEN
�
Always zero for now
��b17 �
Copy of OPEN
�
Always zero for now
��
b18 �
Looping�
��b19 �
Oscillator done�
��
b20 �
Envelope #3 done�These are the logic bits�
�b21 �
Envelope #2 done�to pre-determine when a �
�b22 �
Envelope #1 done�Voice shuts off�
�b23 �Note on /note off���b24 �OPEN���
b25 �
OPEN
�
�
�
b26 �
Looping
�1 = Not lping, 0=looping�
�
b27 �
Oscillator done
�1 = Not Done, 0 = Done�
�
b28 �
Envelope #3 done�1 = Not Done, 0 = Done�
�b29�
Envelope #2 done�1 = Not Done, 0 = Done�
�b30�Voice Stolen
 / Envelope
 #
1 done
�1 = Not stol., 0 = Stolen��b31�Note on /note off�1 = ON , 0 = OFF������

For more details on the use of note-on numbers, see section on Note On, below.

Voice Shut Off

Voice shut off will happen when the pre-determined conditions for a voice are reached. This will be represented by a copy of the upper 8 bits, in the R_FLAGS mentioned above. These upper bits provide a template to be anded with the current R_FLAGS data to tell the attenuator when the voice is finished.

For example:	Fixed waveform with envelope.

The pre-determined conditions for this module to shut off are:
Note off has occurred and Envelope #1 has reached 0 (Env# is done).
This is always a looping voice so this does not matter.
Once both of these conditions have been met then the voice will shut off.

For example:	Sample one shot

Oscillator done and not-looping

For example:	Sample Non-Looping and Envelope

Note off and End of envelope or end of oscillator

Since the end of envelope clears the stealing bit the voice will shut off immediately when this happens.
Otherwise the voice will shut off when the end of oscillator hits.

Delay_Reverb

There will be a delay and/or reverb generator.
 The delay system is a single tap delay. The voices are mixed from the voice buffer in a similar system
to the mixer. There is a reverb_
table that holds the packed auxillary send a
mounts. The send amount for the voice where the
delay/reverb
 is located is equal to the feedback amount. The
mixed auxillary amount is written out to a circular buffer in RAM which is bit cleared to match the maximum delay times.

Max delay time = 2^(bit # cleared) / 20776
 (sample rate)

Example:
	2^15/20776
 = 1.58 seconds

The data will then be read back into the DSP and be put into a voice buffer for the final mix stage.
The reverb will give three more taps that read data out of the External Delay Line. Each tap will have a feedback amount in addition to the master feedback value. All taps can be moved to any location in the delay line and will have to be tested to find the best reverbs.
 The EDL can be variable but since it works on a bit clear method it MUST be aligned to the maximum delay size.

Parameters

Parameter List
	Each of the modules will contain all of the following information in the same locations.

Param # Offset �Description��0�Synth Type��1�R_FLAGS data��2�Osc#1	Pointer to Wave��3�Osc#1	Pitch in 19.12 format��4�Osc#1	Current location	��5�Osc#1	Loop length in samples : Osc#2 Pointer to Wave��6�Osc#1	Loop end in samples : Osc#2 Pitch in 19.12 format��7�Osc#1	End of sample : Osc#2 Current Location��8�Env#1	location��9�Env#1	value��10�Env#1	Release slope��11�Env#2	location��12�Env#2	value��13�Env#2	Release slope��14�Env#3	location��15�Env#3	value��16�Env#3	Release slope��17�Filter#1 Filter Table Location��18�Filter#1 X(n-2)/X(n-1) packed
: Delay mix amount
��19�Filter#1 Y(n-2)/Y(n-1) packed
 : Pan location
��20�Volume��

Parameters 6,7,8 have a dual purpose. For modules with two non-Ram Wave oscillators this is where the parameters for the second oscillator go.
	
Each of the modules will have a method of saving the envelope/ oscillator data with it as needed.
Any of the envelopes
 and / or
 osc#2 locations can replaced by
LFO unit generator parameters.

Paramters 18 and 19 will hold the 7 bit values for reverb send and pan location. These will be cleared after the data has been moved to the appropriat
e loaction in each of the respec
tive tables.

Parameter location and uses

Oscillators 1 and 2:

	These oscillators play RAM waves and use six parameters in offsets 2 through 7.
	Pointer to Wave:		A 24-bit address of where the Sampled waveform lives in RAM.
	Pitch:			A X.12 number to represent Pitch
	Current Location:	A X.12 number where X is the current sample and .12 is the fraction used for interpolating
	Loop Length:		A X.12 number where X is the loop size in samples and .12 is all zeros
				This number is subtracted from Current location when loop end is reached.
	Loop End:		A X.12 number where X is the loop end location in samples and .12 is all zeros
	End of Sample:		A X.12 number where X is the end of wave in samples and .12 is all zeros
				This number is copied into loop end when a note off occurs.

	Osc#1 Reversability:
	Pitch is negated
	Loop end has to be less or equal to than current location
	Loop length is negated ???

Oscillators 3,4,6,7,8:
	These oscillators play Fixed waves and use three parameters 2-4, osc#1 5-7,osc#2
	Pointer to Wave:		A 24-bit address of where the Fixed waveform lives in ROM or DSP RAM.
	Pitch:			A 7.12 number to represent Pitch
	Current Location:	A 7.12 number where 7 bits (0-127) is the current sample and .12 is the fraction used for 				interpolating

Oscillator 5:
	This oscillator plays two waveforms from a choice of Sawtooth, Square, and Noise.
	Pointer to Wave:		Two packed 16-bit numbers which are offsets to a jump location for each waveform
				72 = Sawtooth, A4 = Square, 26 = Noise
				Example: $007200A4 would play first a sawtooth and then a square wave

	Pitch:			A 7.12 number representing pitch for a sawtooth or square.
				$002D0000 the xor value for a Noise wave
	Current Location:	8.23 number representing where the current mathematical value is
	Pulse Width:		A 8.23 number to represent the pulse width of the square wave
				Lower 16 bits may be used to find mix value for wave 1 vs. wave 2
	Pitch:			Same as above but for second wave.
	Current Location:	Same as above but for second wave.

Envelopes:
	Envelope Location:	A 24-bit address of where the envelope lives in DSP RAM.
	Envelope Value:		A 15.15 Number which represents the current value where the envelope is.
	Release Slope:		A 15.15 Number (always negative) which represents the slope at which the envelope heads to a 				value of zero.
LFO:
	Pointer to Wave:		A 24-bit address of where the Fixed waveform lives in ROM or DSP RAM.
	Pitch:			A 7.12 number to represent Pitch @ one eighth the sample rate
	Current Location:	A 7.12 number where 7 bits (0-127) is the current sample.

Filter:
	Filter Location:		A 24-bit address of where the Filter Table lives in DSP RAM.
	Filter X(n-2)/X(n-1)	Two packed values of 16 bit samples from the previous filter accumulation.
	Filter Y(n-2)/Y(n-1)	Two packed values of 16 bit samples from the previous filter accumulation.
	Passing parameters

	At this point there will be no direct passing of parameters except samples 1-8 in registers r20-r27. The value used for certain aspects of a voice will be as follows.
	
	Env#1	will always affect volume. The 15.15 value will be used by directly accessing location offest 9.
		If there is no envelope in this module, the patch must have the desired volume modifier here (0-32767)<<15.
	
	Env#2	will always

affect either filter location or FM amount he 15.15 value will be used by directly accessing location 			offset 12. Same as above if there is no envelope.
	
	Env#3	will affect pitch,pan,distortion,etc. In order to do this in a module pointer table the envelope will be followed by 			another 	unit generator called for example env_fx_pan, which will take the value in R2 and use it to do the 			modulation.
	
	LFO#X	Can affect things like pitch ,pan,distortion, etc. by calling osc_fx_pan after itself in the module pointer table.

VT_DIR_P

	The oscillator modules will be able to assume that VT_DIR_P is pointing to the top of their parameter list simply because they are always called first and second (if neccessary) in the module table.

	The envelopes will also be able to assume the VT_DIR_P is pointing to the top of their parameter list. This will always be the case if there are all three envelopes in a module and there are two oscillators in the fixed wave module. To overcome this obstacle there will be a four instruction unit generator.

skip_unit_generator:
	addq	#12,R_VT_DIR_P
	load	(R_MDTAB_P),R_MDJUMP
	jump	(R_MDJUMP)
	addq	#4,R_MDTAB_P

	Attenuator and Filter cannot assume where VT_DIR_P is located and therefore must use VT_IND_P. There are too many combinations of possible modules and each of these unit generators is only called once so it is not neccessary to move VT_DIR_P along with their parameters.

	All modulation unit generators such as osc_fx_pitch or env_fx_pan use only the values passed to them in registers and therfore do not use th voice table except to store specified values and therefore only need to use VT_IND_P.
Voices
	There will be as many as possible voices running at once(approx. 12). These voices will be dynamically allocated. The voices can be used for music and/or sound fx and will be stolen on a priority scheme.
Voice Table

The parameter list will be stored in a voice table, one voice table entry per module. The first location in each voice table entry will be the physical location of where to jump to for each module. The second will always be volume for the module and the third will be pitch. Pan will be stored in an external buffer for easy access for the mixer module.

There will be special features in the voice table:

The mixer module.
A reverb module.

The last entry in the voice table will always be the mixer module. As a rule it will be likely that the location before the last will be the digital delay unit which will take a voices’ worth of sample buffering.

The voice table algorithm:

	Start_voice_table
		Check what sample out of the 32 DAC buffer has been read by the i2s_isr:
		if (read > write +8) then parse voice table
		else goto Start_voice_table
		move voice_table_loc,R_VT_IND_P

	Parse_voice_table:
		move R_VT_IND_P,R_VT_DIR_P				; put voice # location in R_VT_DIR_P and
									; R_VT_DIR_P for addressing
		read (R_VT_IND_P),voice table location #1
		load (loc #1), place to jump to (R_MDTAB_P)		; R_MDTAB_P = module pointer table
		jump (place to jump to)					; Warp to module

	VT_Return_location:
		add voice_table_length, R_VT_IND_P
		jr parse_voice_table.
Module warping and Voice types

The voice table algorithm reads the first parameter in the module which has the location of the module pointer table. For modules to be used in any synth there has to be a unique module type for every module that you can make. Since we are not using the module type as a jump offset as is in the current synth we can have as many different synth modules as we can come up with. The label placed in parameter 1 of each module in the voice table will be replaced by the physical address of the module pointer table it is associated with. Therefore we can assign any label to the module type we want. It is then up to the compiler, makefile etc. to determine which module label goes with which module pointer table.

FM/ENV can have an module pointer table of
osc #2	;Physical addresses
env #2	;	|
osc #1	;	|
env #1	;	|
atten	;for each module will be here

This may be the third module pointer table in the synth you are using for the game. But the module number for FM/ENV may be
17. Therefore the compiler/voice table entry converter must replace the first parameter in the voice table entry (17) with the module pointer table location #3 which could be for example $f1bc10.

There will be some special cases for module pointer tables:

	No voice or Voice off: parameter 1 in the voice table entry is set to VT_Return_location (instead of -4 in the current synth).
	Mixer return location is Start_voice_table.
	Attenuator return location is VT_Return_location
Voice priority
There will be eight levels of priority:

	000 - 0 is highest priority
	111 - 7 is lowest priority

A note will be able to steal any note with a priority equal to or less than its own priority. A note with 0 priority cannot steal a note with 0 priority. This is done to ensure that there is a way to absolutely protect important notes that are playing.

Algorithm:
	
	Check for any open locations in the voice table.
	If yes 	use it.
	If no 	check for priority notes lower than yourself in parameter 15.
	If yes	use it	
	If no	check for same priority note
	If yes 	use it
	If no 	note fails

	
	Examples:
Priority			�Priority�Priority��4	�3�4��4		�3�3��6		�5 - will be used�3��5�2�2��7 - will be used	�2�1��0		�0�0 - Note Fails��	
	
Methodology:

	Notes for music should generally run at priority 4-7
	General sound fx should run at 2-7
	Important sound efx should run at 0-3

Setting all priorities to 0 will run the synth without stealing.	

Voice Stealing and Note Off

The voice stealing and note off will be handled by the attenuator and the R_FLAGS register. There can be many reasons for a voice to end. After a note off event several things can happen: envelopes can start to release, voices can immediately stop, loop ends can be set to end of sample etc. Or the voice can be stolen at any time by a higher-priority voice. The voice will be turned off in the attenuator according to what the module needs. The attenuator can either set the volume immediately to zero or can ramp the volume down to zero over the next 15 samples or less. It will use the current value in the R_FLAGS register anded with the pre-determined value for this module to calculate when the voice should be turned off.

Reference the Attenuator section for more details.
Memory Requirements
 	
		The synth layout in the DSP RAM will be as follows.
		
Must Haves:
		Synth Code = ? ~1024 instructions @ 2 bytes 			= 2048 Bytes
		Data (variables) and Tables (pan and note)				= 512 Bytes
		Voice Table 21*16 longs = 21* 16 *4 Bytes +16 (Mixer)		= 1360 Bytes
		Midi Buffer = 32 events * 4 Bytes 					= 128 Bytes
		DAC Output Buffer = 32 samples * 2 Stereo * 2 Bytes (if packed) 	= 128 Bytes
		Voice Buffer = 16 voices * 4 Bytes * 8 samples 			= 512 Bytes
		

Total:		4688 bytes

Can Haves:
		Envelopes = 16 * 4 Bytes * # envelopes = 64 Bytes * # envs 		= 512 Bytes
		@ 8 envs w/8 steps	
		User Waveforms = 128 samples * 2 Bytes (packed) 			= 256 Byte

		Vertical blank sample = 694 samples * 2 bytes			= 1.36 K
Data representation
Pitches
	Pitches will be in X.12 format in the voice table and X.10 in the frequency table. The following table shows the correct pitches for a standard 88 note scale and the corresponding X.10 rates for 20776 Hz. (or other sample rates)
The frequency table is 128 entries long = MIDI note number. The reason X.10 was chosen was because the table could then fit all bu
t
 a few
MIDI notes
in 16 - bits. The few that could not fit will be used for special pitches to make one shot sound effects using the non interpolating sampler to play back at multiples of 1000 Hex.

	There are 12 notes in a scale and there should be 100 cents in a half step.
	That makes 1200 cents per octave.
	12 bits gives you 4096 steps per octave or 341 steps per half step.
	This is why the representation in the voice table will be X.12

	Since pitches are ratios we could pick middle C to be 8000 hex.
	C0 would then equal 1000 hex.
	C1 2000 hex
	C2 4000 hex etc. but we need a starting point which will
	be as close to A440 as possible.
	20776 samples/sec * (1/128 samples/cycle)= 162.3125 cycles /sec for a ROM wave.
	A2 / 2^(x/12) = 162.3125 Hz (approx. E1)
	x = 17		; A2 - E1 = 17 1/2 steps in a 12 note scale
	
	162.3125 * 2(17/12) = Anew
	Anew= 433.322876 is unacceptable
	
	So,
	Real E1 = A2 (440 Hz) / 2^(17/12) = 164.813 Hz
	164.813 / 162.3125 = 1.015405468
	1.0154 * 1024 = 1040 	 = 410 Hex = Pitch representation
	
	E1 = 410 Hex with 1000 multiplier in patch
	1000 Hex * 410 Hex = 410000 Hex
	(410000 >> 10) = X.12 Effective frequency
	
	Detuning will then be accomplished by adjusting the multiplier
	for example:	(approx. 1 cent)
	1003 Hex * 410 Hex = 40FC2D Hex
	(410C30 >> 10) = 1043 in X.12 Hex
		 	(approx. 10 cents)
	101E Hex * 410 Hex = 4179E0Hex
	>>10 = 105E in X.12 Hex

	Pitch Table Based on E1:
	
Note Name�Hex Value X.12�Frequency (Hz)��E1�410�164.809����������E2�820�329.626��A2�AD8�439.979������
	Wave pitches will be multiplied by the ratio 2^1/12 per half step offset from the given 19.12 pitch data and corresponding root note assigned to the voice table entry.

Tuning
Tuning can be done accurately in +/- 5 cents which will give us 3.41 * 5 ~ 17 in 4.12 representation. With the upper four bits are the octave.

Each cent is $03 Hex missing the .41 fraction that cannot be represented in 4.12. Therefore single cent tuning will be tough to accomplish accurately without extra bits in the pitch in the voice table entry representation.
	
The tuning in the voice table entry could be a .16 representation of cents in between two notes where $36 ~ 1 cent although this would not allow octave tuning because we only have a 16 bit multiplier.
Waveform storage
Samples
Samples will be 16-bit and 16-bit compressed to 8-bits (SQRT{sample}). A maximum size of 1 Mega-bytes or 1/2 million samples (19 bits of address) is allowed. This is due to the fact that pitches will be in X.12 leaving 19 bits for # of samples. This number will be added to the sample address.
Sample Buddy theory
		For linear interpolation it is necessary for the RAM wave player to grab a sample every new pitch and his so-called (By Paul Foster) sample buddy. This causes a problem at the loop end of a looping sample.
For Example:
		Say we have a looping RAM wave.
		It is 3000 samples long and has a loop end at 2500 and a loop length of 2000.
		This means that if the RAM wave module is currently sitting at a sample of 2000.6 it needs
		sample #2000 and sample #500 to interpolate between.
		The #500 sample is what I call the sample buddy.

		In this particular example it is possible that sample #2001 is close enough to #500 in value to get the job done. But if it isn’t, I suggest copying sample #500 to location #2001 and increasing the length to 3001 samples.
		The reason for doing this is simple: The DSP code shortens by seven instructions to not have to check if the sample buddy is past the end of loop etc.
		In another example, say the RAM wave loops at the end (#3000). Then I suggest copying #1000 (3000 -2000) to the end of the RAM wave increasing its size to 3001.
		This needs to be done only for looping RAM waves.
Loading Samples During Vblank

Vblank is a period of time when the Object processor is spending almost no time on the bus. At 20,776 Hz
it is possible to load 	20,776 Samples / s	= 346 + 4 (just in case) pre interpolated samples
			 60 Vblanks / s
into a buffer at each vblank.

It would take 350 * 2 (16-bit) * 2 buffers (one playing/ one loading) = 1400 bytes of RAM for each sample player
About 2.73 Kbytes for two channels.

This would allow us to use a modified looping non-interpolating oscillator to play this back.

The advantages here are that we can use samples without interfering with the bus.
The disadvantages are that it takes a lot of DSP RAM, and another processor to pre-interpolate the samples and load them into the DSP RAM. If the samples are to be played back at $1000 Hex then there is no need to pre-interpolate but just load the samples.
If the samples were not pre-interpolated it would be indeterminate how much buffering is needed.
For example a pitch of $56BE Hex (A880) would take over 5 times the amount of buffering to have the DSP synth do the interpolation.
External Fixed Waves

There are 8 internal Fixed ROM waves: TRI, SINE, AMSINE, SINE12, CHIRP, NOISE, NTRI, DELTA. If these do not meet your needs :) We can put in more 128 sample long 16 bit or ??? 8-bit compressed ??? fixed waves. It would be to our advantage to pack these wave together so each 512 bytes holds 2 External Fixed Waves.

For example: 	upper 16 bits = Sample1 Fixed Wave #0/ lower 16 bits = Sample1 Fixed Wave #1 in a word

This is where the extra SHA command mentioned above would come in handy. As mentioned in the unit generator section on oscillators above. It would reasonable to put up to 8 Fixed Waves 2K in the synth code without much memory problems.
OUTPUT BUFFERS
There are four output buffers, each 16 samples (stereo pairs) long. All buffers form a contiguous ring in memory using modulo addressing with the “bit clear” trick of the old synth. (This frees up the modulo register for addqmod elsewhere, especially for Fixed wave oscillators)

One 8-stereo-sample buffer is for the dac to currently read. The next 8-stereo-sample buffer "around the ring" has been filled by the synth. The third and fourth "are being filled." It would be adequate to have just a “third”, but the “bit clear” trick requires the total buffer length to be a power of 2 (we choose 32 here).

You have two base pointers, one for the dac to read up to 8 stereo samples at a time, and one for the synth to fill 8 stereo samples at a time. At the beginning of time, the buffers are set up so that the synth goes ahead and fills 32 samples. This happens more quickly than the dac can empty 32 samples. The result is that for the very first pass by the DAC through its buffer, the synth is actually ahead of the DAC. But since no notes will have been turned on yet, in practice all voices will be generating 0’s, so the synth should not accidentally produce clicks or pops on startup.

When the synth advances its "synth fill base pointer" and lands on top of the "DAC reading base pointer", then the synth hangs until the "synth fill base pointer" != the "DAC reading base pointer." When the dac advances its
"DAC reading base pointer" and lands on top of the "synth fill base pointer", we are in trouble (DAC hangs? DAC repeats previous buffer?).

Here are the advantages. This allows us to use the DAC output buffer as a buffer into which to accumulate samples, without needing an extra accumulation buffer. After the mixer, or whatever, is certain that at least 8 stereo samples are free, then it can go ahead and write out those 8 stereo samples without having to check for free memory on every sample.
MIDI
The synth will respond to MIDI note on/off, velocity, pan, volume, and pitch bend.
The synth will be able edit its voice table entries through MIDI system exclusive messages in real time like standard sound modules.
The synth will be able to audition sounds in real time in edit mode and play back Midi sequences in song mode.
Event Buffers
There will be a two MIDI buffers. One will be for the real time MIDI parser will put events the other will be where games programs will write SFX events. If either of the buffers has data the MIDI parser routine will parse the data. A buffer is determined to have data if its read pointer != its write pointer. If a note needs to steal another note the reading from this buffer will stop until the synth steals the note (by next interrupt). All events after and including the stolen event will be delayed by 1ms. If a steal fails the event is discarded and the buffer moves to the next event location.
MIDI Events
MIDI events will be represented by either a 32- or 64-bit number which does not conform exactly to the MIDI standard, and a corresponding time stamp, also 32 bit.
Note On

When a note on occurs, the MIDI event parser in combination with the voice priority mechanism determines which voice is available. The voice number will be passed to the synth as part of the note on message (which does not match the standard MIDI format). When the parser reaches the note on message in the MIDI input buffer, the parser checks the note table to see if that location is open. If the location is being used the parser continues to look for an open voice. When the parser finds one or steals one, it writes that number in the note table at the original note on# location.
The Note table will look like:

Note On#�Actual Voice#�Meaning��0�00010�Music #2��1�00011�Music #3��2�10101�SFX #5��3�01000�Music #8��4�10010�SFX #2��5�01110�Music #14��6�01010�Music #10��7�00111�Music #7��8�10110�SFX #6��....����15�00001�Music #1��

There is one occasion where we need a back-up scheme. Because of interactive sound effects, a music voice may have to steal another music voice at a time that the parser could not predict. Then there has to be a way to update the Note_table. This update occurs during the stealing mechanism. If this voice is stolen the stealing mechanism sets bit 31 in the Note_table (negation). The negated Note table entry will tell the next note off (for example) that the note has been stolen. But by leaving the voice # in the voice table unchanged, we can still use that number for some as-yet undetermined purpose. For example, in a debug mode we can check whether the note-off really matches its note-on, even if the note is turned off. If not, then we may be stealing “too many” notes. We can also use the bits remaining in the note_table for some other as yet unknown purpose.
Note Off

The note off event reads the Note_table and turns that voice off. It does not do this if:

1: It is a Music Note off and the voice # > 16 	; SFX bit is set.
2: It is a SFX Note off and the 0 < voice # < 16 	; SFX bit is unset. SFX note was stolen
3: It is any note off and the voice # < 0		; Negative means the voice was stolen
Pan
Pan events will modify the pan_table according to which voice the pan event is affecting. The pan_table is the location where all of the pans for the voices will be packed for easy use by the mixer. The pan event will read the value from the table, modify it, and then write it back to that location. Since pan values are going to be packed (two pan values per long word), this will take a little code; but since pan updates happen at most 1000 a second from MIDI, this overhead will be acceptable.

Pan change 2 Packed Pan

We want each long word to look like:	upper 16 bits pan voice #1 / lower 16 bits pan voice #2
					upper 16 bits pan voice #3 / lower 16 bits pan voice #4
					etc

The MIDI event parser and voice stealing mechanism will have a voice number stored in a register where the voice table entry is going to be copied. After the parser has copied the first parameters the parser will have the last parameter, Pan, in a register.
The location of pan will be added to the offset.
The location + offset will have its lowest bit tested and cleared.
Load the pan data from the location

If the bit is not set then:
rorq	#16,pan_data
and	FFFF0000, pan_data
or	new_pan_data,pan_data
rorq	#16,pan_data

else:
and	FFFF0000, pan_data
or	new_pan_data,pan_data

Store new_pan_data

Note: Pan will no longer need to be stored in the voice table.

Controller Changes

MIDI parser routine

Using the Synth in a game
Music
Modules for music will be stored in a performance file. The performance file will include all data necessary for modules, unit generators, envelopes, pointers to waveforms, voice numbers etc. to play back a MIDI file. Performance files will be made on the Jaguar or on the tool running on the interface computer.	
The Performance file will follow the format:
Voice table entry data
Envelope data
Waveform pointers
Waveform data
Other data: i.e. Filter tables, Wave tables, Unit generators etc. T.B.D.

The Performance File will tell the Synth which modules are being used and the sizes and locations of data. This will then set up the Synth compiling options and tell you how much memory is being used.

While the Synth is producing sound, a fixed set of modules will remain inside Synth memory. For some games, one set of modules will be pre-loaded as the game starts, and remain unchanged for the entire game. Other games may choose to download new modules on occasion. This is allowed when the synth is completely silent.

MIDI files will be pre-parsed before compiling to reduce size and processing time. If a reduction in speed and size is not possible MIDI files will be linked in themselves.
Sound effects

Using sound effects in a game can be done two ways.

Option 1: The nice method

Put a MIDI event in the current MIDI buffer location. This will then trigger the MIDI routine to copy the voice table entry for you into the voice table, includes priority stealing etc.

Option 2 : The Brute Force method.

Read the voice table for an open voice, which you may know ahead of time because only X amount of voices are playing for music.
Then copy the voice table entry into the voice table making sure to copy the first parameter last. Copying the voice table entry into the voice table does not have to be done in reverse order.
Jaguar Interface
The jaguar interface will show the current Performance File.
This includes the name of each voice table entry, its Midi channel, volume, priority #, and location.
There will be a way to load and save individual voice table entries and performances over MIDI.
There will be a way to show MIDI data sent and received.
It will display MIDI note on note off, controller messages.
The interface will display current synth time used and number of voices used.
The interface will allow for loading and saving performance/ voice table entry information through files on the debugger.
Using the synth with CD-ROM

The CD-ROM is a double speed CD-ROM and runs at an interrupt rate of 88.2 KHz. The i2s_isr can be assigned to this rate and if we copy new information to the DAC’s from the synth every fourth interrupt we get an effective sampling rate of 22050 Hz for the synthesizer.
Getting Sound Data Off the CD-ROM

There are two ways to get data off of the CD.

Option 1: Getting data from the i2s_input (Red Book Audio @ 44.1 KHz) and mixing it with the synth output.

Option 2: Reading sample data from the CD unit directly into a buffer or pair of buffers. In this option the samples would be played back like a normal looping sample where the sample start location would be the pointer to the top of the buffer.
Synchronizing the CD Audio
At the start of the Game and from time to time the CD can go out of sync. If say for example a bad guys shots you and you weren’t expecting it and you bump the CD player. It can take up to a whole second for the CD to recover. To help the Audio re -sync there must be a header that describes, this is the long word where audio data starts. Since the data from the CD is serial there has to be a header that can synchronize the start of left sample. It should be approximately 16 Bytes or 4 long words.

The header can be something to the effect of: 4A 61 67 4D 75 73 69 63	Repeated 4 times or more.
						J a g M u s i c

repeated ### how many? ### times. The synth scans for this resynchronization header only when it has been directed to do so by the controlling program. Thus, in the unlikely event that the audio contains the above bit stream, the synth will not mistakenly resynchronize.

Also following the Header should be a set of long words (even number) that gives the Synth information about the following sample data. The format should be something like:

# of channels		; 1 mono, 2 stereo; 4, 8, and 16 reserved.
format			; 16 bit , 8 bit , 8 bit compressed
sample rate		; 22050, 20776, 44100 etc
interleave location	; Tells us which of the long words is our data out of the data stream
CD control program communication
The program on the 68000 or the GPU controlling the CD must have a way to talk to the Synth. There are two possible ways of doing this.

Option one: A bi-directional mailbox type RAM location where there are two boxes incoming and outgoing

Option two: MIDI note event that tells us information in a voice table entry and the synth writes return data into the voice table entry at a certain parameter location. This is similar to above but incorporates itself into the synth more nicely. It will take up a voice location in the table but since the music is most likely coming off the CD there will be plenty of room for sound effects.

If you are using CD audio, start the dummy voice for playing CD audio at priority 0 before starting any other priority 0 voices. If you wait until later, there is a “gotcha”: since priority 0 voices cannot be stolen, it is theoretically possible that you would fill up the voice table with priority 0 voices. Later, when you want to start CD audio, there would be no priority 0 voice slots left.

Appendix 1. Code examples.

Preliminary specification	Atari Corporation Confidential	Version 0.90

�PAGE �

�PAGE �2�

