—7—_7

Jaguar Workshop Series Page 1

The Jaguar Workshop Series is designed to introduce new Jaguar developers to several basic concepts
useful in creating unique multimedia applications with the Jaguar developer console. The first
installment of this series is designed to introduce you to the specific steps necessary to propetly initialize
the Jaguar console for a very small application with very modest hardware demands. Later workshop
topics will expand upon this basic application to take advantage of most of the inherent features in the
Jaguar hardware and provide useful source code that you may use as a starting point for your own
applications.

The following table indicates those topics which are currently planned to be covered in this series. It is

likely that we will add more in the future. The table also notes which topics have source code and which
have documentation. Please keep up-to-date via our bulletin board for new topics as they become

available.

: O e ode O e atto op
1 v v Minimum Object List Update
2 v v Moving a Bitmap with the Object Processor
3 v Clipping a Bitmap with the Obiject Processor
4 v Scaling a Bitmap with the Object Processor
5 GPU as the Primary Processor

, 6 v GPU Interrupt Object Processing

W 7 Joystick Reading/Scrolling over a Large Object
8 Copying a Bitmap with the Blitter
9 Scaling a Bitmap with the Biitter
10 Fractional Line Drawing with the Blitter
11 Skewing a Bitmap with the Blitter
12 v Rotating a Bitmap with the Blitter
13 Exploding a Bitmap with the Blitter
14 Performing Logic Operations with the Blitter
15 Transparent Drawing with the Blitter
16 Character Tiling with the Blitter
17 Drawing Monochrome Overlays with the Blitter
18 PIT Interrupt Processing
19 STOP Object Processing
20 Using Jagpeg
21 Using LZJAG
22 Matrix Multiplies with the GPU/DSP
wl

©1994 Atari Corp. Confidential Information 'ﬂ Property of Atari Corporation 8 November, 1994

AGUA

™ WORKSHOP
SERIES

N # I
Copyright ©1994 Atari Cor\

Minimum Object List Update

This application, MOU.COF, focuses on the most basic (and necessary) components of a Jaguar
program, namely, the creation and maintenance of an object list that is used by the Object Processor

(OP) to render screen images.

To follow along with this example you will need the following files included in the
JAGUAR\WORKSHOP\MOU directory:

In addition I w

mou_init.s
mou_list.s
mou.inc
makefile
jaguar.bin

T 3R B IR B 4

ill assume that you have properly installed your developer’s toolkit and have the header

files supplied by Atari in your include file directory.

This example application will display a 16-bit CRY bitmap image (contained in JAGUAR.BIN) and do

required maintenance during the vertical blanking period. The application will proceed through the
following steps:

1.

2.

Do basic hardware initialization and define a stack
Copy the bitmap image to an absolute location in RAM.
Initialize the video hardware.

Create an object list.

Define a vertical-blank interrupt handler.

Turn on video and begin list processing.

Release control to the debugging stub.

©1994 Atari Corp.

Confidential Information ™) Property of Atari Corporation 8 November, 1994

Page 2 Minimum Object List Update

With the exception of step four, this code can be found in MOU_INIT.S. Step four is coded in
MOU_LIST.S.

MOU _INIT.S begins by including the global header file, JAGUAR.INC, and a program-specific header
file named MOU.INC. These header files provide all of the constants used in the source code. The first
instruction executed is as follows:

move.l #$00070007,G_END

This instruction ensures that the Graphics Processing Unit (GPU) is configured to use Motorola MSB-
LSB (big-endian) for its 1/O registers. This line of code is required for all Jaguar programs. A similar
line is required for D_END if the DSP is needed (which this sample doesn’t).

move.w #S$FFFF,VI

move.l #stopob,dol
swap do
move.l d0,0LP

The first line disables video interrupts and is required to prevent interrupts from occurring in the middle
of your setup routines. The next lines temporarily set the current object list to be a single stop object.

The next line of code you will find common to most Jaguar sample programs is:

move.l #INITSTACK,a7

Most Jaguar programs will want to setup a stack. In this case, the equate INITSTACK is used.
INITSTACK is defined in JAGUAR.INC to be $1FFFFC (the top longword of DRAM).

Next, a generic subroutine, InitVideo, is called to initialize the video registers. InitVideo is capable of
configuring video for any non-interlaced pixel resolution. The code for this subroutine follows:

InitvVideo:
movem.l d0-d6,-(sp)
move.w CONFIG,do
andi.w #VIDTYPE,dO ; 0 = PAL, 1 = NTSC
beg palvals
move.w #NTSC_HMID,d2 ; Values defined in JAGUAR.INC
move.w #NTSC_WIDTH,doO
move.w #NTSC_VMID,d6
move.w #NTSC_HEIGHT,d4
bra calc_vals
palvals:
move.w #PAL_HMID,d2 ; Values defined in JAGUAR.INC

©1994 Atari Corp. Confidential Information i o . Property of Atari Corporation 8 November, 1994 ;

;o
N

. Minimum Object List Update Page 3

move.w #PAL_WIDTH,dO

move.w #PAL VMID,dé6

move.w #PAL_HEIGHT,d4
calc_vals:
Wwidth of screen in clocks
Height of screen in half-lines

move.w do0,width
move.w d4,height

LY Y

move.w do0,dl

asr #1,d1 width/2

-

Mid - Width/2
(Mid - Width/2)+4

sub.w d1,d2
add.w $4,d2

e e

sub.w #1,d1 . width/2 - 1
ori.w #$400,dl ; (Width/2 - 1)]$400

move.w dl,a_hde
move.w di,HDE

move.w d2,a_hdb
move.w d2,HDB1
move.w d2,HDB2

move.w d6,d5
sub.w d4,ds
move.w d5,a_vdb

add.w d4,d6
move.w d6,a_vde

move.w a_vdb,VDB

move.w #SFFFF,VDE REQUIRED!!!

~e

Black Border
Black Background

move.l #0,BORD1
nove.l #0,BG

- we

movem.l (sp)+,d0-dé .
rts

This routine first determines whether the console is a NTSC or PAL machine and loads four registers
with pre-defined values for the right console type. The variables width and height are then loaded with
two of those constants describing the width of the screen in pixel clocks and the height of the screen in
pixels.

To obtain the actual horizontal resolution of the screen in pixels, we must first choose a pixel divisor.
The following table lists the available pixel divisors and the approximate resulting overscanned and non-
overscanned resolutions:

©1994 Atari Corp. Confidential Information i o.¥ Property of Atari Corporation 8 November, 1994

Page 4 Minimum Object List Update

Pixel Divisor Non-Overscanned Overscanned
1 1064 1330
2 532 665
3 355 442
4 266 332
5 213 266
6 177 222
7 152 190
8 133 166

Most of the workshop examples (including this one) will use a pixel divisor of four. This mode yields
the closest approximation to square pixels and gives us plenty of pixels to work with. Whenever we need
to know the width of our screen in pixels, the following formula may be used:

width

ixel width = ——————
P pixel divisor

Computing the vertical height of the screen is even easier. The height variable, set by our video
initialization subroutine, is in already in pixels.

The last lines of the video initialization sets the video border and background colors. The border color is
the color used on those parts of the screen outside of the displayable region. When overscanning, this
color does not matter. You should note that the BORD1 and BORD2 registers specify a color in 24-bit
RGB. By setting both registers (using a longword write) to zero in our sample code we make the border
black.

If the BGEN bit (#7) is set in the Video Mode register (we’ll do this later), the line-buffer is initialized
to the color specified in the BG register at the beginning of every scanline. This only has an effect in
RGB16 or CRY16 mode and the contents of BG will be a CRY or 16-bit RGB color pixel depending
upon the mode you’re in. This example will use 16-bit CRY mode but since we’re setting it to black,
zero will work in either mode.

Jaguar video display is accomplished using an object list. The object list is consulted by the Object
Processor at the start of every horizontal scanline to determine what needs to be drawn. As the screen is
drawn and each scanline is successively rendered, certain parts of the object list are destroyed. For this
reason, the object list must be updated during each vertical blank. Generally, you should save copies of
the phrases which will get destroyed when you first create the list, then you can simply restore those

fields from the saved copies.

The object list in this example is the minimum necessary to generate a display. It is arranged as follows:

©1994 Atari Corp. Confidential Information i o Property of Atari Corporation 8 November, 1994

| Minimum Object List Update Page 5

Phrase Object Type

Description

This object causes & branch to the Stop object if the VC register
points past the visible screen. The VC register contains the line
which is currently being prepared for display. its value is specified in
half-lines.

2 Branch This object causes a branch to the stop object if the VC register
points before the beginning of the visible screen.

Bitmap This object contains the data for the Jaguar logo we want to display
3&4 | on screen. Bitmap objects take two phrases (16 bytes) and must be
| doubie-phrase aligned.

5 Stop This object ends object list processing for the current scan-line.

s ——

The first two branch objects simply skip the rest of the list and jump straight to the stop object if the
vertical region being updated is outside of the area we want to be visible. This is a required component
of every object list you set up. Because of a bug in the Jaguar chipset, the OP must run €very scanline
(this is done by setting a_vde to SFFFF in the video initialization). Please trust us on this, bad things will

happen in the system if you ignore this step.

The bitmap object is responsible for the display of the Jaguar logo. The stop object simply terminates list
processing for the current scan-line.

| . The sample code places the object list into a buffer referenced by the label main_obj_list. The buffer is
P where the list is first created and where it will be updated during every vertical-blank.

The subroutine InitLister builds the initial copy of the object list in the buffer main_obj_list. The
subroutine begins as follows:

movem.l d1-d5/a0,-(sp)

lea InitLister, a0l
move.l a0,d2

add.l #(LISTSIZE—l)*S,dZ

Register A0.1 will be used as a roving list pointer which will be advanced as each phrase of the list is
written. D2.1 is initialized with this code to contain a pointer to the stop object. This pointer will be
needed for constructing each object in the list.

Throughout the entire routine, D1.1 and DO.1 will be used to temporarily hold the high and low long of
the phrase being constructed. The first object to be written is a branch object. To review, 2 branch object

is arranged as follows:

Branch Object
63 55 47 39 31 23 15 7 0
3 @ —_— T T :Z’. M_._'_' ! - ___;“” - “T_’Z“”“T""
Unused _—_Mﬂ@,__”_ffﬂ__ci*ﬂ_l‘i@#ﬂpﬁ

©1994 Atari Corp. Confidential Information 7P Property of Atari Corporation 8 November, 1994

Page 6 Minimum Object List Update

We will start by initializing D1 and DO to contain the object TYPE, CC (condition code), and LINK
fields as follows:

clr.l dl
move.l #BRANCHOBJ|O_ BRLT,d0
jsr format_link

The branch object only branches if a specified condition is met. This condition is encoded in the CC
field of the object. The following table lists the five possible condition codes:

Equate CC Description

O _BREQ 0 | Branch if YPOS == VC or YPOS == $7FF.

O _BRGT 1 | Branch if YPOS > VC.

O BRLT 2 | Branch if YPOS < VC.

O_BROP 3 | Branch if the Object Processor Flag (OBF) is set.
O_BRHALF 4 | Branch if on second half of display line (HC & 1 == 1).

The last line calls a subroutine which takes the address we previously stored in D2.1 and transforms it as
necessary to place it in the LINK field of the phrase. The LINK field indicates the address of the next
object to process if the branch condition is met. If the branch condition is not met the next object in the
list is processed. The format_link subroutine is as follows:

format_link:
movem.l d2-d3,-(sp)

andi.l #$3FFFF8,d2 ; Ensure alignment
move.l d2,d3 ; Make a copy
swap d2 : Equivalent to << 21

clr.w d2
1sl.1 #5,d2
or.l d2,do
1sr.1l #8,d3 copy >> 11
1sxr.1l $#3,d3

or.l d3,d1

~e

movem.l d2-d3,-(sp)
rts

The only remaining field of the branch object that has not been filled in is the YPOS field. We want the
branch object to branch if the VC register is past the end of the visible screen. To do this, the YPOS
field is initialized with the same value the VDE register was initialized with. This value was stored in a
variable called a_vde by the InitVideo routine. The following code retrieves this value, shifts it into
place and stores it. Next, the phrase is stored into the buffer.

move.w a_vde,d3 ; YPOS = a_vde
1sl.w #3,d3 ; Shift to bits 13-3
or.w d3,d0 ; Store it

©1994 Atari Corp. Confidential Information R Property of Atari Corporation 8 November, 1994 {

Minimum Object List Update

move.l dl,(al)+ ; Store the phrase
move.l d0,(a0)+ ; in the list buffer

The next phrase is written in a similar manner. First, the CC and YPOS fields are stripped from the last
phrase. This branch object will branch if VC hasn’t reached the top of visible screen yet so YPOS will
be set to @_vdb and CC will be set to YPOS > VC. The code follows:

andi.l #S$FF000007,d0 Mask away YPOS and CC
ori.l #0_BRGT, d0 YPOS > VC

move.w a_vdb,d3 YPOS = a_vdb

l1sl.w $3,d43 : Make it bits 13-3
or.w d3,do

move.l dl,(al0)+ : Store second branch object
move.l do0,(al)+

The next object that needs to be written to the list buffer is the bitmap object. Bitmap object require two
phrases of space and must be double-phrase aligned. Since our entire list is double-phrase aligned with
the ‘.dphrase’ statement and the bitmap object will be preceded with two phrases of branch objects we
can be sure that the bitmap object will be properly aligned. The two phrases of a bitmap object are

arranged as follows:

Bitmap Object
63 55 31

| DATA Pointer (Bits 23-3) | UNKPointer (Bits21-3) | . HEIGHT

i

63 55 a7 39 31 18

[TS S ERSORRp S —_

Unused _ (FIRSTPIX | INDEX __ IWIDTH ~__ DWIDTH) XPOS

RELEASE - - REFLECT PITCH-—- —- DEPTH
TRANSPARENT — -— RMW

To begin processing the bitmap object, the temporary phrase storage registers must be cleared and the
address of the stop object must be stored in the LINK field as follows:

cir.l dl
clr.1 do

jsr format_link

il . The LINK field of a bitmap object contains the address of the next object to be processed. Because the
address of the stop object remains in D2, a subroutine call to format_link is all that is necessary. You
should note that the TYPE field does not need to be filled in because the bitmap object TYPE code is 0.

©1994 Atari Corp. Confidential Information " o .N Property of Atari Corporation 8 November, 1994

Page 8 Minimum Object List Update

The next field to be filled in is HEIGHT. This field simply specifies the height of the bitma;i in pixels.
The sample code that follows takes the equate BMP_HEIGHT (defined in MOU.INC), shifts it into
place, and stores it in our temporary phrase:

move.l #BMP_HEIGHT,d5
1sl.1 #8,d5
1sl.1 #6,d5
or.l d5,do0

The YPOS field of a bitmap object contains the vertical position where the bitmap will be displayed in
half-lines. To center the bitmap in our example we use the following formula:

height - BMP_HEIGHT
2

YPOS:()x2+a__vdb

Because YPOS must be specified in half-lines, the pixel result must be multiplied by two to convert it.
a_vdb, which is the topmost displayable scanline set by InitVideo, is already in half-lines. To simplify
the code which sets YPOS below, both the division and multiplication may be removed because they
cancel each other out in the equation. The constant BMP_HEIGHT is set in MOU.INC and is equal to
the height of the bitmap in pixels. The result of the equation is AND’ed with $FFFE to ensure that the
resulting value is even (which is required).

move.w height,d3
sub.w #BMP_HEIGHT,d3
add.w a_vdb,d3
andi.w #S$FFFE,d3

l1sl.w #3,d3
or.w d3,do

A]

The last field in the first phrase that needs to be completed is the DATA field. This field will contain a
pointer to our sample bitmap.

For this example, the bitmap image is left in ROM (the Alpine board) and its address is assigned to the
label jagbits by the linker. Under most circumstances you should copy bitmaps to RAM with the Blitter |
prior to displaying it. ROM access speed can be up to ten times slower than RAM (in the case of

fetching object data, it is)! If you try to display more than a couple of bitmaps from ROM, the Object
Processor will run out of time and your display will be distorted. The only reason we don’t use a RAM
copy in the first few examples is to avoid having to explore the Blitter as well as the Object Processor.

We also expect most bitmaps to be compressed in ROM. If you have enough ROM space to leave your
bitmaps uncompressed then you should instead compress your bitmaps and enhance your game by
adding a level, more music, etc..

You should note that the DATA field only encodes bits 23-3 of the bitmap address. Bits 2-0 aren’t
needed because the bitmap must be phrase-aligned. The following code forces the bitmap address to be
phrase-aligned, shifts it into place, and stores it (note: if the bitmap isn’t really phrase-aligned, it will
just look funny on screen):

©1994 Atari Corp. Confidential Information) Property of Atari Corporation 8 November, 1994 ,

Minimum Object List Update Page 9

@ W move.l #jagbits,d3

andi.l #S$FFFFF0,d3
1sl.1 #8,d3
or.l d3,do

In the diagram of a bitmap object presented earlier, two fields had a gray background. These fields are
modified by the Object Processor as it renders scanlines. For this reason, these portions of the object list
must be updated during each vertical blank. This example does the least work possible by simply storing
a copy of the phrase that gets destroyed so that it may be restored during the vertical blank. In order to
do this, the following code stores the first phrase of the bitmap object with a copy in the variables
bmp_highl and bmp_lowl.

move.l dil,(a0)+
move.l dl,bmp_highl
move.l do0,(a0)+
move.l d0,bmp_lowl

The second phrase of a bitmap object contains more fields, however several may be set by simply
OR’ing together equated values. The following code sets three fields. The TRANS bit is set causing the
object processor to skip drawing pixels with the color $0000 effectively making these pixels transparent.
The DEPTH field is set to O_DEPTH16 indicating a 16-bit-per-pixel bitmap. The PITCH field is set
to O_NOGAP which means that there is no gap between successive phrases of the bitmap data.

move.l #O_TRANS,dl
move.l #0O DEPTH16|O_NOGAP,d0

The next section of code creates the XPOS field. Again, we will center the bitmap horizontally in a
similar manner to how we centered it vertically. There are some key differences, however. The value in
width is the number of pixel clocks in a scanline. This must first be divided by the pixel divisor to
determine the true horizontal screen resolution. You should also note that XPOS = 0 begins display at
HDB so there is no reason to add the horizontal display offset as we did with YPOS. The constant
BMP_WIDTH comes from MOU.INC and is equal to the bitmap width in pixels. Examine the
following code:

move.w width,d3 ; Width in clocks
lsr.w $2,43 ; /4 Pixel Divisor
sub.w #BMP_WIDTH,d3 ; — BMP_WIDTH
lsr.w #1,d3 ; /2 to center it
or.w d3,do ; Store it

The last fields that must be set are IWIDTH and DWIDTH. IWIDTH contains the actual image width
in phrases. DWIDTH contains the width (also in phrases) of the image to display. For now, these fields
should be set to the same value. A later example will examine hardware clipping using these fields.

The following code sets the IWIDTH and DWIDTH fields to the constant BMP_PHRASES (defined
in MOU.INC) and stores the second phrase of the bitmap object:

©1994 Atari Corp. Confidential Information Y o ¥ Property of Atari Corporation 8 November, 1994

Page 10 ' Minimum Object List Update

move.l #BMP_PHRASES,d4
move.l d4,d3

1sl.1 #8,d4 ; DWIDTH
1sl.1 #8,d4
1sl.1 #2,d4
or.l d4,do

1sl.1 #8,d4 ; IWIDTE Bits 31-28
1sl.1 $#2,d4
or.l d4,do
lsr.1l #4,d3 IWIDTH Bits 37-32
or.l d3,dl

~e

move.l dl,(a0)+ : Store phrase
move.l do0,(a0)+

The last object that is required in the object list is the stop object. The stop object is written as follows:

clr.1l di
move.l #(STOPOBJ|O_STOPINTS),d0

move.l dl,(a0)+
move.l do0,(ald)+

Besides the object TYPE field, the equate O_STOPINTS allows CPU stop object interrupts to be
processed (if we enable them later).

To complete the InitLister subroutine, the address of the list buffer is reloaded, word-swapped (the
pointer to the object list must be word-swapped) and returned in DO as shown by the following code:

move.l #main_obj_list,d0
swap do

movem.l (sp)+,d1-d5/a0
rts

The final subroutine called by the initialization segment is InitVBint. This routine installs the vertical
blank handler, enables video interrupts, and lowers the 68000’s interrupt priority level (IPL) to actually
allow CPU interrupts to occur.

; All Jaguar interrupts appear to the CPU as Level 0 Autovector interrupts. Whenever a Level 0
Autovector interrupt occurs, the vector at address LEVELO ($100) is jumped through. When more than
1 one type of interrupt is enabled, the INT1 register must be consulted to determine what type of interrupt

: ©1994 Atari Corp. Confidential Information P Property of Atari Corporation 8 November, 1994 |

{ Minimum Object List Update Page 11

Pactually caused the handler to be called. In this example that step isn’t necessary because the only kind
 of interrupts we’re concerned with are video interrupts.

| The Jaguar Vertical Interrupt register (VI @ $FO004E) controls which half-scanline the vertical blank
 interrupt occurs (this must be an odd value). The following code installs the 68k Autovector handler and

F configures the VI register properly.

move.l #UpdateList,LEVELO

move.w a_vde,do0
ori.w $#1,d40
move.w do0,VI

The next section of code enables CPU video interrupts by setting the correct bit in INT1:

move.w INT1,d0
ori.w #C_VIDENA,dO
move.w d0,INT1

Finally, the last section of the subroutine lowers the 68k IPL to level 0 to allow interrupts to occur.

move.w sr,d0
andi.w #S$F8FF,d0
move.w d0,sr

Only two more statements are required to enable the video display. The routine InitLister returned a pre-
. swapped pointer to the object list buffer in DO. This value must now be stored in the Object List Pointer
(OLP @ $F00020). The final command reconfigures the video controller by correctly setting the Video
Mode register (VMODE @ $F00028). Sample code follows:

move.l dO0,OLP
move.l #CRY16|CSYNC|BGEN|PWIDTH4|VIDEN, VMODE

The CRY16 equate enables 16-bit CRY mode. The CSYNC equate enables output to composite sync
(which is required for television output). The BGEN equate causes the line buffer to be cleared to the
background color prior to starting each scanline. The PWIDTH4 equate enables a pixel divisor of four.
Finally, the VIDEN equate enables video. Please note that Jaguar video should never be turned off by

not setting the VIDEN flag.

The last instruction in our initialization is ‘illegal’. This is a brute-force way to return control to the
debugger. Most applications will enter their main logic loop at this point. Please note, however, that
even though the debugger regains control, interrupts will continue to occur and be serviced by our

handler.

©1994 Atari Corp. Confidential Information 7L Property of Atari Corporation 8 November, 1994

Page 12 Minimum Object List Update

o

The vertical blank handler for this sample is very simpie. It must first restore any modified fields in the
object list. Next, it must signal that it has handled the interrupt by using the sequence illustrated below:

UpdateList:
move.l a0,-(sp)
move.l #main_obj_list+BITMAP_OFF,al

move.l bmp highl, (a0)
move.l bmp_lowl,4(al)

move.w #$101,INT1
move.w #S$0,INT2

move.l (sp)+,a0
rte

The constant BITMAP_OFF comes from MOU.INC and is the offset in bytes from the beginning of the
list to the first phrase of the bitmap. Because this is an interrupt routine it must end with the 68k RTE
instruction.

Though a MAKEFILE for the sample code is provided, different developers may choose different ‘
development environments for assembly and linkage. This section will only illustrate the command line ‘1
switches used with MADMAC and ALN and why they were chosen.

Each assembly file is assembled with MADMAC with the command line options ‘-fb’ and ‘-g’. The
switch ‘-fb’ causes MADMAC to output BSD format object files (the type strongly recommended for
Jaguar development). The ‘-g’ switch causes source-level information to be added to the object file.

The following table shows the flags used with the Atari Linker ALN and their purpose:

Switch Meaning
E

-V -v nable medium-verbosity. The -v switch may be used from
zero to three times for increasing levels of verbosity.

-e Output a COFF format executable.

-g Place source-level information in the output file.

B Include local as well as global symbols in the output file.
-rd Align each object module to a double-phrase boundary.
-a 802000 x 4000 Create an absolute file with the TEXT segment starting at

$802000, the DATA segment being contiguous with the
TEXT segment, and the BSS segment starting at $4000.

-i jaguar.bin jagbits include a raw binary file named JAGUAR.BIN. The start
address of the file will be assigned to the label jagbits’. The ,
end address of the label will be assigned the label ‘jagbitsx’. 13
-0 mou.cof Name the output file MOU.COF. i

©1994 Atari Corp. Confidential Information ™ Property of Atari Corporation 9 November, 1994

] Minimum Object List Update Page 13

| Once MOU.COF has been successfully output, the sample program may be easily transferred to the
j ROMULATOR by typing ‘rdbjag mou’ or ‘wdb mou’ at a DOS or TOS command line prompt

- depending upon which debugger you prefer. You should ensure that the ROMULATOR’s write-inhibit
L switch is not enabled or the file will not be correctly transferred. By the placing the name of the file on
| the command line it will be automatically loaded as an absolute file. To load the file after the debugger

has started, type ‘aread mou.cof’.

To start the sample program and display the Jaguar logo, simply type ‘g 802000 and hit return. The
sample program may also be started by resetting the Alpine while holding down the ‘B’ button on

" Joypad 1.

SHEBRN

©1994 Atari Corp. Confidential Information 7P Property of Atari Corporation 8 November, 1994

‘ WORKSHOP
A G % SERIES

Copyright ©1994 Atari Co

Moving a Bitmap with the Object Processor

tallment in this series you should now be able to construct a basic
object list and maintain it during the vertical blank. This document will expand upon the first example,
adding motion to the bitmap that is displayed. Each Workshop Series tutorial will not spend much time
reviewing old material. Each installment will usually only talk about the differences between the current
example and the last.

To follow along with this tutorial you will want the source code files to the MOVE.COF executable
which may be found in the \J AGUAR\WORKSHOP\MOVE directory:

¢ mov_init.s
mov_list.s
mov_move.s
move.inc
jaguar.bin
makefile

As with our last example, this sample code will display a 16-bit CRY Jaguar logo. This time, however,
the code will update the position of the object during each vertical blank so it moves around, reversing
direction each time it hits the edge of the display area.

b

The source file MOV _INIT.S is identical to the last example’s initialization code with the exception of
the following line (highlighted in bold):

jsx Initvideo
jsr InitMovevars
jsr InitLister
isr InitVBint

The external subroutine InitMoveVars is located in MOV_MOVE.S. It initializes a few BSS variables
that we will use to track the object’s movement as follows:

InitMoveVars:
move.l d0,-(sp)

move.w #X_MOTION,x motion
move.w #Y_ MOTION,y motion

©1994 Atari Corp. Confidential Information ™) Property of Atari Corporation 8 November, 1994

Page 2 Moving a Bitmap with the Object Processor

clr.w frame_ count
clr.w x_min

move.w width,d0
lsr.w $2,d0

sub.w #BMP_WIDTH, d0
sub.w #1,d0

move.w d0,x max

move.w a_vdb,d0
andi.w #SFFFE,dO
move.w d0,y min

move.w a_vde,do0
sub.w #BMP_LINES,d0
andi.w #S$FFFE,d0
sub.w $2,d0

move.w d0,y max

move.l (sp)+,d0
rts

The variables x_motion and y_motion are initialized with constants stored in MOVE.INC. By altering
these constants you can change the speed and initial direction of the bitmap’s motion (negative values
move up and to the left, positive values move down and to the right).

The variable frame_count is initialized to zero. This variable will be incremented each time a vertical
blank occurs and is zeroed each time we actually move the object. This allows the sample code to set a
frequency (some divisor of the frame rate) at which the bitmap will be updated.

The rest of the initialization sets up four variables that will contain the logical extents of the viewscreen.
Each time the object is moved its position is compared to the values in these variables and its direction is
reversed if necessary. You will also notice that the width and height of the bitmap are subtracted from
the width and height of the bounding rectangle. This is to account for the fact that the movement
constraints must be relative to the upper-left hand corner of the bitmap.

In this example we can use the same object list that was used in MOU.COF. The only difference is that a
copy of the bitmap’s initial XPOS and YPOS are stored in the variables x_pos and y_pos.

As with MOU.COF, the UpdateList routine is called during each vertical blank. It updates the fields of
the object list that were modified by the object processor. Because this example requires very little work
to be done to move a bitmap around, all of this processing is done during the vertical blank. This also
allows us to return control to the debugger so we can manipulate the movement variables in real time.

The Programmable Interrupt Timer would normally be used to regulate the speed of processing game
logic (or in this case, the speed of the moving bitmap) however, for this example, the frequency of the
vertical blank itself will be used as the timer.

©1994 Atari Corp. Confidential Information . a8 Property of Atari Corporation 8 November, 1994 /

; Moving a Bitmap with the Object Processor

- After saving registers, the very first thing UpdateList does is to call the routine MoveBitmap which can

. be found in MOV_MOVES. MoveBitmap starts out by incrementing the variable frame_count. By
comparing the frame_count variable with the pre-defined constant UPDATE_FREQ (defined in

. MOVE.INC) the sample code determines whether the subroutine will actually modify the object position
variables or wait for more frames to occur first. The code to this logic follows:

MoveBitmap:
movem.l d0-dl,-(sp)

move.w frame count,d0
add.w #1,d0

cmp.w #UPDATE_FREQ, 40
beqg do_move

move.w d0,frame_count
bra move_done
do_move:
clr.w frame_count

When the subroutine actually gets the chance to update the object’s position it must first check to ensure
that the object remains within the bounds set by the x_min, x_max, y_min, and y_max variables. If the
object reaches the limit of these boundaries, the appropriate motion variable is negated to reverse its
direction. Finally, the motion variable for each direction is added to the object’s position variable and the
function returns. The remaining code for this function follows:

move.w x_pos,d0 verify X range
cmp.w x_min,do
ble change_x if at left edge

cmp.w x_max,d0 or at right edge
blt add xmot
change_x:
neg.w X_motion . reverse X direction
add_xmot:
add.w x_motion add motion amount

move.w y_pos,dl verify Y range
cmp.w y _min,dl
ble change_Yy if at top edge

cmp.w y_max,dl or at bottom edge
blt add_ymot

neg.w y_motion reverse Y direction
add.w y_motion,dl add motion amount

move.w d0,x pos store new values
move.w dl,y_pos
move_done:
movem.l (sp)+,d0-dl
rts

©1994 Atari Corp. Confidential Information 7L Property of Atari Corporation 8 November, 1994

Page 4 Moving a Bitmap with the Object Processor

During each vertical blank, the interrupt handler UpdateList restores the stored copy of the first bitmap
phrase which was modified by the object processor. As an additional step, however, the YPOS portion
of that phrase is stripped away with an AND instruction and replaced with the contents of the variable
y_pos. The following code illustrates the updating of the first phrase:

move.l #main_obj_list+BITMAP_OFF,al

move.l bmp highl, (a0) ; restore first longword
move.l bmp lowl,doO ; grab long with YPOS
andi.l #$FFFFC007,d0 ; strip old value

move.w Yy pos,dl ; and replace new

1sl.w #3,d1
or.w di,do

move.l d0,4(a0) ; now store it

Next, the XPOS field in the second phrase of the bitmap must be updated. This time, however, the
phrase to be modified comes directly from the object list buffer. This is possible since the Object
Processor never modified this phrase. The following code updates the XPOS field in the second phrase
of the bitmap and exits the interrupt handler:

move.l 12(a0),d0 ; Low long of phrase 2
andi.l #SFFFFF000,d0 ; Extract XPOS

move.w X_pos,dl Fill in current XPOS
or.w dl,do

-

[=

move. do,12(a0) ; Store it back

move.w #$101,INT1
move.w #0,INT2

movem.l (sp)+,d0-dl/a0
rte

Use your favorite variation of MAKE to create MOVE.COF (the flags should be the same as
MOU.COF) and load it into the debugger by typing ‘wdb move’ or ‘rdbjag move’. Type ‘g’ and hit
return to see the results of this sample program.

As an experiment, you can try modifying the values for X_MOTION, Y_MOTION, and
UPDATE_FREQ in MOVE.INC. You will get different horizontal and vertical speeds depending on
the values you select.

ZReIR

©1994 Atari Corp. Confidential Information . o .8 Property of Atari Corporation &8 November, 1994

 TA

b
b

™ WORKSHOP
SERIES

~ #
Copyright ©1994 Atari CO,-p_\}\ 3

Clipping a Bitmap Object with the Object Processor

This example builds upon the original example in this series, MOU.COF, to demonstrate the built-in
capability of the Object Processor to horizontally clip bitmap objects. Before examining this example,
please familiarize your self with Workshop Series #1: Minimum Object List Update.

The following source code files to CLIP.COF may be found in the \JAGUAR\WORKSHOP\CLIP sub-
directory:

clp_init.s

clp list.s

clp clip.s

clip.inc

jaguar.bin

makefile

TR BE R 2R R 4

The tutorial document for this example has not yet been created. Please refer to the source code
comments in each of the files for specific information about this example.

©1994 Atari Corp. Confidential Information 7 a,¥ Property of Atari Corporation 9 November, 1994

WORKSHOP
SERIES

. #4

Scaling a Bitmap Object with the Object Processor

AGUYAR

Copyright ©1994 Atari Corp.

This example builds upon the original example in this series, MOU.COF, to demonstrate the built-in
capability of the Object Processor to scale bitmap objects. Before examining this example, please
familiarize your self with Workshop Series #1: Minimum Object List Update.

The following source code files to SCALE.COF may be found in the \JAGUAR\WORKSHOP\SCALE
sub-directory:

scl init.s
scl list.s
scl_scal.s
scale.inc

jaguar.bin

L 3R B K R B 4

makefile

The tutorial document for this example has not yet been created. Please refer to the source code
comments in each of the files for specific information about this example.

©1994 Atari Corp. Confidential Information 7L Property of Atari Corporation 9 November, 1994

™ WORKSHOP
SERIES

X 6
Copyright ©1994 Atari Corp. > 1 ’1

GPU Interrupt Object Processing

. This example builds upon the original example in this series, MOU.COF, to demonstrate GPU interrupt
| objects. Before examining this example, please familiarize yourself with Workshop Series #1: Minimum

Object List Update.

The following source code files to GPUINT.COF may be found in the
JAGUAR\WORKSHOP\GPUINT directory:

¢ gpu _init.s
gpu_list.s
gpu_hndl.s
gpuint.inc
jaguar.bin
makefile

* o 6 0

prSsaReanast

The tutorial document for this example has not yet been created. Please refer to the source code
comments in each of the files for specific information about this example.

©1994 Atari Corp. Confidential Information 7 o N Property of Atari Corporation 8 November, 1994

~
Copyright ©1994 Atari Corp. >

Rotating a Bitmap with the Blitter

This example demonstrates bitmap rotation using the Blitter. Initialization and object list
creation/maintenance is handled in the same manner as the first Workshop Series example, MOU.COF.
Before examining this example, please familiarize yourself with Workshop Series #1: Minimum Object
List Update.

The following source code files to J AGROT.COF may be found in the
JAGUAR\WORKSHOP\JAGROT directory:

jr_init.s

jr_list.s

jr_grot.s

jr.inc

jaguar.bin

makefile

The tutorial document for this example has not yet been created. Please refer to the source code
comments in each of the files for specific information about this example.

©1994 Atari Corp. Confidential Information 7 4 N Property of Atari Corporation 8 November, 1994

	Jaguar Workshop Series
	Workshop Series #1 Minimum Object List Update
	Introduction
	Goal
	Program Initialization
	A Simple Object List
	 The Bitmap Object
	Completing the List
	Initializing Interrupts
	Enabling Video Processing
	The Vertical Blank Handler
	Assembly and Linkage
	Running MOU.COF

	Workshop Series #2 Moving a Bitmap with the Object Processor
	Introduction
	Goal
	Program Initialization
	Building the Object List
	The Vertical Blank Handler
	Moving the Object
	Updating the Object
	Running MOVE.COF

	Workshop Series #3 Clipping a Bitmap Object with the Object Processor
	Introduction
	Under Construction

	Workshop Series #4 Scaling a Bitmap Object with the Object Processor
	Introduction
	Under Construction

	Workshop Series #6 GPU Interrupt Object Processing
	Introduction
	Under Construction

	Workshop Series #12 Rotating a Bitmap with the Blitter
	Introduction
	Under Construction

